首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
长江流域降水径流的年代际变化分析   总被引:1,自引:0,他引:1  
沈浒英 《湖泊科学》2003,15(Z1):90-96
应用1951-2001年长江流域年、季降水量资料、1885-2001年梅雨量资料以及一百多年以来长江重要控制站宜昌、汉口、大通年径流量资料,对长江流域降水径流的年代际变化、气候转折以及降水径流的变化趋势进行了分析研究.反映出长江流域夏季降水将有更加集中的趋势,即降水时间更集中、强度趋向于更大,对防洪不利.据趋势预测,宜昌、汉口径流量有减少的趋势,大通径流量有增加的趋势.  相似文献   

2.
黄河与长江流域水资源变化原因   总被引:3,自引:0,他引:3  
利用1951~2008年黄河与长江流域逐月降水和径流资料,对流域年径流变化进行趋势性检验,分析年降水量和径流量的相关关系变化,比较不同时段流域降水和径流的变化趋势和双累积曲线,以及径流对降水的敏感性变化.结果表明,黄河干流上游年降水量微弱下降,中下游降水减少趋势显著,为8.8~9.8mm/10a;而全流域径流量均呈现显著递减的趋势,为7.8~10.8mm/10a(通过95%置值度检验);径流系数也明显下降,下降范围为0.013~0.019/10a,流域产流能力下降,径流减少趋势在20世纪80年代末至90年代初发生突变.长江流域大部降水减少趋势显著,为18.2~24.7mm/10a;上游(寸滩站,宜昌站)径流减少趋势显著,为9.9~7.2mm/10a,中游(汉口站)和下游(大通站)径流呈微弱下降趋势,为2.9~2.1mm/10a;长江流域上游径流系数增加不显著,中下游径流系数呈显著增加趋势,速率分别0.005/10a和0.005/10a,表明中下游产流能力增强.根据水文参数公式计算,与1951~1969年相比,1970~2008年,降水减少和人类活动引起的下垫面变化对黄河流域径流减少量的贡献率分别为11%和83%;在长江流域,降水减少对径流量变化的贡献占29%,人类活动引起的径流量增加占71%.1980~2008年,黄河流域由于下垫面变化造成径流量减少的比例在兰州、三门峡、花园口、利津分别为97%,83%,83%和91%,降水引起的径流量减少比例分别为3%,17%,17%和9%.长江流域降水减少对寸滩、宜昌、汉口、大通径流量减少的贡献分别为89%,74%,43%和35%,下垫面变化对径流增量的贡献分别为11%,26%,57%和65%.人类活动的作用强度逐年增大,2000年之后,下垫面变化对黄河、长江流域径流变化量的贡献率上升到84%和73%.下垫面变化引起了黄河下游径流减少和长江下游径流增加,在干旱区和湿润区对径流变化的作用相反.造成这一现象的原因是:黄河流域人类的活动用水量的增加直接造成径流减少;长江流域因太阳辐射下降引起实际蒸发量下降,同时湖泊面积减少,下垫面硬化也在一定程度上造成产流能力增加.  相似文献   

3.
长江流域近50年降水变化及其对干流洪水的影响   总被引:1,自引:0,他引:1  
根据我国长江流域气象观测站近42年的资料,分析了整个流域年和季节平均面雨量、暴雨日数和暴雨量的变化特征,以及降水对流域径流和洪水的影响.长江流域年和夏季平均面雨量存在明显的年际和年代变化特征,也表现出比较显著的趋势变化特点.大部分测站年平均面雨量呈增加趋势,夏季和冬季平均面雨量的增加趋势尤其明显;秋季平均面雨量呈显著下降趋势.同时,年和夏季暴雨日数和暴雨量也在较大范围内呈显著增加趋势.长江流域的降水对干流平均流量具有重要影响.1973年、1983年和1998年的洪水主要是由明显高于平均的流域面雨量引起的;长江下游平均流量变化趋势也同流域年平均面雨量、夏季平均面雨量变化趋势基本一致,特别是70年代末以来,下游平均流量和流域面雨量的上升趋势更加明显,并同时在1998年达到最高值.长江流域大的丰水年一般对应El Nino年或El Nino次年,表明E1 Nino对长江较大洪水可能具有一定影响.  相似文献   

4.
王静  祁莉  何金海  吴志伟 《地球物理学报》2016,59(11):3985-3995
土壤湿度作为陆面过程的重要因子,对局地及邻近地区的大气环流和天气气候有重要影响.青藏高原的土壤湿度观测站点稀少,时间较短,鉴于此,本文使用经过部分观测站点检验的卫星反演数据,研究了春季高原土壤湿度的年际变化与后期夏季我国东部降水的联系和可能机理.结果表明:在全球变暖的背景下,高原土壤湿度总体呈现出显著增加的趋势,去除该线性趋势后,我们定义了一个高原土壤湿度指数TPSMI来定量表征高原土壤湿度的年际变化特征,发现表层、中层、深层的土壤湿度年际变率趋于一致,且春季土壤湿度与夏季土壤湿度显著相关(相关系数可达0.56).当TPSMI偏大时,即高原东部土壤湿度偏大,而西部偏小时,夏季在高原东部(西部)存在一个潜热(感热)热源,二者共同作用下,在对流层中高层从高原西部经我国大陆直至东北地区激发出一个气旋—反气旋—气旋波列,该波列呈相当正压结构,有利于东北冷涡的加强及冷空气向南爆发;与此同时,南亚高压加强东伸,西太副高西伸加强,低空南方暖湿气流与北方干冷气流在长江流域汇合,伴随着上升运动加强,从而有利于夏季长江流域降水增多;反之,当TPSMI偏小时,夏季长江流域降水减少.  相似文献   

5.
中国气候干湿变率与ENSO的关系及其稳定性   总被引:8,自引:0,他引:8  
利用1951-01~2000-10中国160站气温和降水月平均资料, 计算了自修正PDSI指数. PDSI指数EOF分析第一模态空间场分布和1951~2000年PDSI指数的变化趋势分布十分相似, 第一模态时间系数反映了空间场随时间的演变情况. 研究发现, EOF分析所揭示的中国气候干湿变率和ENSO有着很好的关系. 这种关系表明, 在典型的ENSO暖状态, 中国大部分地区都偏干, 特别是华北地区更易偏干, 长江以南地区和西北容易偏湿, 而长江中下游地区处于变干和湿的过渡区, 变干或湿不明显. 在典型的ENSO冷状态则情况相反. 而中国气候干湿变率年际和年代际变化都对应着强El Niño事件; 反过来当发生强El Niño事件时, 中国气候干湿变率在年际和年代际尺度上有可能发生剧烈变化. 最近20~30 a中国气候干湿的年代际变化, 特别是华北自20世纪70年代末的变干和西北自80年代中期的变湿, 与ENSO朝更暖的状态变化及全球变暖有着紧密的联系. 1951~2000年中国气候干湿变率和ENSO关系的稳定性分析表明, 中国气候干湿变率和ENSO之间在3~8 a变化周期上存着很好的相关关系, 但这种相关关系不稳定, 存在着年代际变化: 1951~1962和1976~1991年两个时间段两者相关关系很高, 而在1963~1975和1992~2000年两时段内, 两者相关关系较差.  相似文献   

6.
1990s长江流域降水趋势分析   总被引:2,自引:0,他引:2  
依据国家气象局提供的实测月降水和日降水资料,运用Mann-Kendall(M-K)非参数检验法验证了降水趋势,并通过空间插补法,由点扩展到面,分析了1990s长江流域降水变化特征,发现1990s长江流域降水变化以降水在时间和空间分布上的集中度的增加为主要特点:时间上,年降水的增加趋势以冬季1月和夏季6月降水的集中增加为主;一日降水量大于等于50mm的暴雨日数和暴雨量在1990s也有了较明显的增加.空间上,年降水、夏季降水、冬季降水的增加都以中下游区的增加为主,尤其以鄱阳湖水系、洞庭湖水系的降水增加为主.1990s长江流域春季和秋季降水的减少以5月和9月两个汛期月份的降水减少为主,除金沙江水系和洞庭湖水系等少数地区外,流域大部分地区降水呈减少趋势.上述1990s出现的降水趋势明显与近年来全球变暖背景下长江流域各地区不同的温度及水循环变异有关.  相似文献   

7.
利用中国气象科学研究院气候系统模式CAMS-CSM中大气和陆面的耦合版本进行了土壤湿度和热带太平洋海温异常影响东亚夏季风的数值模拟,探讨了中国东部从长江中下游到华北(YRNC)春季土壤湿度和厄尔尼诺(El Ni?o)在影响夏季东亚环流和中国东部降水中的作用及其机理.结果表明,中国东部春季土壤湿度和El Ni?o海温异常均对东亚夏季风有显著的影响,其中土壤湿度对中国东部夏季降水的影响略大于海温的作用,然而两者对东亚夏季风环流和中国夏季降水的作用显著不同. YRNC土壤偏湿(干)引起的降水异常模态为中国北部和东南降水偏少(多),而长江流域和东北降水偏多(少),环流上YRNC土壤偏湿(干)能引起西太平洋副热带高压显著偏强(弱)偏西(东)和东亚大槽偏深(浅),表现为弱(强)夏季风形态. El Ni?o对降水的影响显著不同于土壤湿度的作用,在El Ni?o发展期的夏季,中国东北和华北地区为异常反气旋,长江中下游和华南地区为异常气旋,西太平洋副热带高压偏弱,引起长江下游、华南降水偏多,华北降水偏少.在El Ni?o衰减期的夏季,中国东北地区存在一个异常气旋,华南有一个异常反气旋,异常反气旋西部的偏南气流和异常气旋西部的偏北气流在中国中部和北部地区汇合,使得夏季华北和长江中游地区降水增多,其余地区降水偏少.  相似文献   

8.
淮河流域夏季降水的振荡特征及其与气候背景的联系   总被引:1,自引:0,他引:1  
魏凤英  张婷 《中国科学D辑》2009,(10):1360-1374
利用1922~2007年淮河流域和长江中下游夏季降水量资料,使用小波变换、广义极值分布等方法,分析了近86年来淮河流域夏季降水的年际、年代际振荡和概率分布特征.在此基础上,分析了东亚夏季风、太平洋海表温度及东亚遥相关环流等气候背景与淮河流域夏季降水年际和年代际振荡的联系.另外,还比较了淮河流域与长江中下游夏季降水年代际振荡特征及其气候背景的差异.结果表明:①淮河流域夏季降水存在显著的准2年振荡和年代际振荡特征.准2年振荡的强弱变化与年代际振荡强弱变化一致.20世纪90年代末以来,淮河流域夏季降水处在年代际偏多期,准2年振荡特征突出,极端强降水事件的概率亦显著增加;②淮河流域夏季降水年代际振荡与PDO及东亚夏季风年代际振荡关系密切,当PDO处于冷位相年代际阶段且东亚夏季风处于年代际偏弱时,淮河流域夏季降水呈年代际偏多趋势;③淮河流域夏季降水的准2年振荡主要受到东亚夏季风准2年振荡的控制,同时与东亚环流系统从高纬至低纬的"+,?,+"特定配置有关;④淮河流域与长江中下游夏季降水存在年代际位相差异,其差异主要与西太平洋副热带高压强度和位置的年代际变化有关.  相似文献   

9.
近期在很多地方洪水越来越频繁且破坏性更大.20世纪90年代以来全球大洪水造成社会经济财产巨大损失,30次大洪水每次总损失额均超过10×108美元.1990-1998年的9a时间的大洪水爆发的次数比1950-1985年期间Ma大洪水次数还要多.近年来中国大陆也遭受了若干重大洪水灾害(包括1996和1998年两次大的财产损失).与气候变率和变化相关的洪水灾害和易爆发程度的显著增加,这是当前最紧迫的问题.随着气温升高大气中持水量也增加,因此大规模强度的降水的可能性也增大.己观测到高而集中的大降水事件而且这种趋势在未来气候变暖条件下可能增加,大降水事件的增加是洪灾增加的必然条件.当然也有一些其它的非气象因素加剧洪灾的发生,比如土地利用变化(森林砍伐、城市化)导致土壤持水能力下降,径流系数增加;此外,人类占据了洪泛区,可能导致洪水损失增大.另外物质财富在洪泛区的积聚也导致了洪灾损失增加.毫无疑问,由于人类活动和气候的共同作用,未来洪水风险在很多地方可能增加.洪水易爆发程度被认为是暴露系数和调节能力的函数,而且在许多地方所有这些变量都可能增加.而随着暴露系数比人类调节能力增加快,因此洪水易爆发程度增大.然而,要完全从径流变化中区分气候因素导致的强烈自然变率还是直接的人为环境变化是很困难的.由于使用不同的假定情景和不同的气候模型,得到的未来环境的预测结果差异也很大.IPCC第三次评估报告中广泛讨论了气候变化与洪水之间的关系.IPCC第三次评估报告警告说,在东亚季风区非常湿润的季风季节出现的可能性非常大,进而会导致相应地区洪水风险增加.本文总结了迄今为此可收集到的有关长江洪水的资料.利用一些案例来分析研究未来假定情景下气候对水文的影响,并对东亚地区的模拟结果进行了讨论.  相似文献   

10.
长江流域降水变化及其趋势演变   总被引:1,自引:0,他引:1  
本文对中国长江流域降水趋势进行了分析.指出对月降水量而言,20世纪后50年不同区域出现1不胃的降水趋势变化特征.趋势插补法研究表明中国降水时空分布趋势十分明显.对长江流域长期降水资料分析研究指出夏季月份降水时间更集中,而对年降水而言在一些站则表现出明显的周期变化.  相似文献   

11.
洞庭湖流域气候变化特征(1961-2003年)   总被引:6,自引:0,他引:6  
以22个气象站1961-2003年的气象观测数据为基础,对洞庭湖流域的气温、降水和参照蒸散量进行趋势与突变分析.从1970年开始,洞庭湖流域经历了一个缓慢而稳定的增温过程,1990s发生突变进入快速增温时期;尤其是是在春、冬季节,这种突变式的增温特征非常显著;秋季持续而稳定增温,而夏季气温并无明显变化.进入1990s,洞庭湖流域降水有明显增多,尤其是夏季降水突变式增加;与此同时,夏季暴雨频率也突变式增大,但是暴雨强度并无明显变化.1900s迄今,参照蒸散量持续而稳定的减少,夏季减少量尤为显著.全球变暖的区域响应,驱动洞庭湖流域水循环速度加快,夏季降水增多,而蒸发能力减弱,这是1990s洞庭湖流域洪水频发的主要气候因子.  相似文献   

12.
The occurrence of devastating floods in the British uplands during the first two decades of the twenty‐first century poses two key questions: (1) are recent events unprecedented in terms of their frequency and magnitude; and (2) is climate and/or land‐use change driving the apparent upturn in flooding? Conventional methods of analysing instrumental flow records cannot answer these questions because upland catchments are usually ungauged, and where records do exist they rarely provide more than 30–40 years of data. In this paper we analyse all lichen‐dated upland flood records in the United Kingdom (UK) to establish the longer‐term context and causes of recent severe flooding. Our new analysis of torrential sedimentary deposits shows that twenty‐first century floods are not unprecedented in terms of both their frequency (they were more frequent before 1960) and magnitude (the biggest events occurred during the seventeenth–nineteenth centuries). However, in some areas recent floods have either equalled or exceeded the largest historical events. The majority of recent floods have been triggered by torrential summer downpours related to a marked negative phase of the summer North Atlantic Oscillation (NAO) between 2007 and 2012. It is of concern that historical data suggests there is far more capacity in the North Atlantic climate system to produce wetter and more prolonged flood‐rich periods than hitherto experienced in the twenty‐first century. Looking forwards, an increased likelihood of weather extremes due to climate change means that geomorphological based flood series extensions must be placed at the centre of flood risk assessment in the UK uplands and in similar areas worldwide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
长江流域历史水旱灾害分析   总被引:1,自引:1,他引:1  
黄忠恕  李春龙 《湖泊科学》2003,15(Z1):210-215
长江流域有丰富和长期的水旱灾害史料,最早的水灾和旱灾记载有2000余年的历史,经过系统整理和分析的历史水旱灾害资料有1000余年的旱涝型年表和500余年的旱涝分布图集.在以上资料基础上,对长江流域历史水旱灾害的地域分布特性和时间变化规律进行了初步分析:500余年历史水旱灾害的地域分布显示,流域水旱灾害总体特征是水灾重于旱灾,各级水旱灾害频率的地域分布极不均匀,存在着显著的灾害多发和少发地带,它们与自然地理环境、水系特征、气候条件和社会经济条件等因素有关;1000余年旱涝型年表分析表明,长江流域洪涝和干旱频次在时间上的非均匀分布并非完全随机,表现出多种时间尺度的年际变化特征,其中主要表现为约100a上下的大干湿气候期变化及40a左右的小旱涝期振动.  相似文献   

14.
Tropical river basins are experiencing major hydrological alterations as a result of climate variability and deforestation. These drivers of flow changes are often difficult to isolate in large basins based on either observations or experiments; however, combining these methods with numerical models can help identify the contribution of climate and deforestation to hydrological alterations. This paper presents a study carried out in the Tapaj?s River (Brazil), a 477,000 km2 basin in South‐eastern Amazonia, in which we analysed the role of annual land cover change on daily river flows. Analysis of observed spatial and temporal trends in rainfall, forest cover, and river flow metrics for 1976 to 2008 indicates a significant shortening of the wet season and reduction in river flows through most of the basin despite no significant trend in annual precipitation. Coincident with seasonal trends over the past 4 decades, over 35% of the original forest (140,000 out of 400,000 km2) was cleared. In order to determine the effects of land clearing and rainfall variability to trends in river flows, we conducted hindcast simulations with ED2 + R, a terrestrial biosphere model incorporating fine scale ecosystem heterogeneity arising from annual land‐use change and linked to a flow routing scheme. The simulations indicated basin‐wide increases in dry season flows caused by land cover transitions beginning in the early 1990s when forest cover dropped to 80% of its original extent. Simulations of historical potential vegetation in the absence of land cover transitions indicate that reduction in rainfall during the dry season (mean of ?9 mm per month) would have had an opposite and larger magnitude effect than deforestation (maximum of +4 mm/month), leading to the overall net negative trend in river flows. In light of the expected increase in future climate variability and water infrastructure development in the Amazon and other tropical basins, this study presents an approach for analysing how multiple drivers of change are altering regional hydrology and water resources management.  相似文献   

15.
Projections of changes in climate are important in assessing the potential impacts of climate change on natural and social systems. However, current knowledge on assembling different GCMs to estimate future climate change over the Pear River basin is still limited so far. This study examined the capability of BMA and arithmetic mean (AM) method in assembling precipitation and temperature from CMIP5 under RCP2.6, RCP4.5 and RCP8.5 scenarios over the Pearl River basin. Results show that the BMA outperforms the traditional AM method. Precipitation tends to increase over the basin under RCP2.6 and RCP4.5 scenarios, whereas decrease under RCP8.5. The most remarkable increase of precipitation is found in the northern region under RCP2.6 scenario. The linear trend of the monthly mean near-surface air temperature increases with the growing CO2 concentration. The warming trends in four seasons are distinct. The warming rate is prominent in summer and spring than that in other season, meanwhile it is larger in western region than in other parts of the basin. The findings can provide beneficial reference to water resources and agriculture management strategies, as well as the adaptation and mitigation strategies for floods and droughts under the context of global climate change.  相似文献   

16.
A rapid reduction in run-off has been observed in the middle reaches of the Yellow River basin in recent decades. Understanding the contributions of climate change and human activities, such as vegetation restoration and water consumption, to surface water resource reduction has become urgent and very important for future regional planning. Here, we use attribution approaches to explore the effects of climate change and human activities on run-off over the past six decades. The results showed that the observed annual run-off at Tongguan station, which is located within the mainstream of the Yellow River, exhibited a significant decreasing trend of −0.69 mm year−1 (p < .01) and varied from −0.28 to −1.46 mm year−1 (p < .01) in the eight selected tributaries from 1960 to 2015. Two relatively abrupt changes in the double mass curves occurred around 1979 and 1999; compared with Period 1 (P1; 1960–1979), the average catchment run-off decreased 32% during Period 2 (P2; 1980–1999) and up to 49% during Period 3 (P3; 2000–2015). We calculated that approximately 29% of the reduction in the run-off during P2 and 18% during P3 were attributed to climate change. Increased surface water consumption resulted in effective run-off reduction, with relative contributions of approximately 27% and 28% during P2 and P3, respectively. With the implementation of the “Grain-for-Green” project, the vegetation coverage rapidly increased from 36% in P1 to 52% in P3 and reduced run-off by 35% during P3. These findings explain the run-off reduction and benefit water resource management in the middle reaches of the Yellow River basin.  相似文献   

17.
Z. X. Xu  J. Y. Li  C. M. Liu 《水文研究》2007,21(14):1935-1948
Some previous studies have shown that drying‐up of the lower Yellow River resulted from decreasing precipitation and excessive industrial and agricultural consumption of water from the middle and downstream regions of the Yellow River. On the basis of average air temperature, precipitation, and pan evaporation data from nearly 80 gauging stations in the Yellow River basin, the monotonic trends of major climate variables over the past several decades are analysed. The analysis was mainly made for 12 months and the annual means. The isograms for annual and typical months are given in the paper. The result shows that the average temperature in the study area exhibits an increasing trend, mainly because of the increase of temperature in December, January and February. The largest trend is shown in December and the smallest is in August. There are 65 of 77 stations exhibiting a downward trend for annual precipitation. In all seasons except summer, there is a similar trend in the upstream region of the Yellow River, south of latitude 35°N. It is interesting to note that the pan evaporation has decreased in most areas of the Yellow River basin during the past several decades. April and July showed the greatest magnitude of slope, and the area from Sanmenxia to Huayuankou as well as the Yiluo River basin exhibited the strongest declining trend. The conclusion is that the decreasing pan evaporation results from complex changes of air temperature, relative humidity, solar radiation, and wind speed, and both climate change and human activities have affected the flow regime of the Yellow River during the past several decades. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The mountain headwater Bow River at Banff, Alberta, Canada, was subject to a large flood in June 2013, over which considerable debate has ensued regarding its probability of occurrence. It is therefore instructive to consider what information long‐term streamflow discharge records provide about environmental change in the Upper Bow River basin above Banff. Though protected as part of Banff National Park, since 1885, the basin has experienced considerable climate and land cover changes, each of which has the potential to impact observations, and hence the interpretations of flood probability. The Bow River at Banff hydrometric station is one of Canada's longest‐operating reference hydrological basin network stations and so has great value for assessing changes in flow regime over time. Furthermore, the station measures a river that provides an extremely important water supply for Calgary and irrigation district downstream and so is of great interest for assessing regional water security. These records were examined for changes in several flood attributes and to determine whether flow changes may have been related to landscape change within the basin as caused by forest fires, conversion from grasslands to forest with fire suppression, and regional climate variations and/or trends. Floods in the Upper Bow River are generated by both snowmelt and rain‐on‐snow (ROS) events, the latter type which include flood events generated by spatially and temporally large storms such as occurred in 2013. The two types of floods also have different frequency characteristics. Snowmelt and ROS flood attributes were not correlated significantly with any climate index or with burned area except that snowmelt event duration correlated negatively to the Pacific Decadal Oscillation. While there is a significant negative trend in all floods over the past 100 years, when separated based on generating process, neither snowmelt floods nor large ROS floods associated with mesoscale storms show any trends over time. Despite extensive changes to the landscape of the basin and in within the climate system, the flood regime remains unchanged, something identified at smaller scales in the region but never at larger scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, monthly and annual Upper Blue Nile Basin rainfall data were analyzed to learn the rainfall statistics and its temporal and spatial distribution. Frequency analysis and spatial characterization of rainfall in the Upper Blue Nile Basin are presented. Frequency analysis was performed on monthly basin rainfall. Monthly basin average rainfall data were computed from a network of 32 gauges with varying lengths of records. Monthly rainfall probability distribution varies from month to month fitting Gamma‐2, Normal, Weibull and Log‐Normal distributions. The January, July, October and November basin rainfall fit the Gamma‐2 probability distribution. The February, June and December ones fit Weibull distribution. The March, April, May and August rainfall fit Normal distribution. The September rainfall fits Log‐Normal distribution. Upper Blue Nile Basin is relatively wet with a mean annual rainfall of 1423 mm (1960–2002) with a standard deviation of 125 mm. The annual rainfall has a Normal probability distribution. The 100‐year‐drought basin annual rainfall is 1132 mm and the 100‐year‐wet basin annual rainfall is 1745 mm. The dry season is from November through April. The wet season runs from June through September with 74% of the annual rainfall. October and May are transition months. Monthly and annual rainfalls for return periods 2‐, 5‐, 10‐, 25‐, 50‐ and 100‐year dry and wet patterns are presented. Spatial distribution of annual rainfall over the basin is mapped and shows high variation with the southern tip receiving as high as 2049 mm and the northeastern tip as low as 794 mm annual average rainfall. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号