首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 438 毫秒
1.
Reliability of Building Inventories in Seismic Prone Regions   总被引:1,自引:0,他引:1  
A study on uncertainties in building inventory and vulnerability assessment for the city of Basel, Switzerland a moderate hazard but high-risk area is presented. Emphasis is put on the special conditions and demands on the data assessment procedure in such an environment. The building information was assessed from the sidewalk using a method similar to that proposed in FEMA-154. With only three persons working for two weeks, about 10% of the citys building stock was assessed. The quality of the dataset was tested by using pre-existing reference data. These tests revealed patterns of misinterpreted structural information; important features like the floor type in URM buildings were difficult to identify.Six methods are proposed to derive building vulnerability from the collected structural information using the definitions of EMS98. The variation between the individual results was investigated in detail. A sample earthquake scenario with intensity IX in the city of Basel is used to demonstrate the influence of uncertainty in the inventory on the scenario results. The range of variation in the results is huge. Overall damage in the six scenarios differed by up to 27%. The amount of collapsed buildings in the historical part of the city comprised between 28% in the worst case and 3% in the best. There is a distinct influence of the inspectors opinion visible in the scenario results, which introduces a remarkable uncertainty. This emphasizes the importance of reliable inventory assessments and makes uncertainty analysis in earthquake scenarios indispensable – especially in areas of moderate seismicity where observational data from earthquake damage is missing.  相似文献   

2.
A GIS-oriented procedure that may partially illuminate the consequences of a possible earthquake is presented in two main steps (seismic microzonation and vulnerability steps) along with its application in Tabriz (a city in NW Iran). First, the detailed geological, geodetical, geotechnical and geophysical parameters of the region are combined using an Analytic Hierarchy Process (AHP) and a deterministic near-field earthquake of magnitude 7 in the North Tabriz Fault is simulated. This simulation provides differing intensities of ground shaking in the different districts of Tabriz. Second, the vulnerability of buildings, human losses and basic resources for survivors is estimated in district two of the city based on damage functions and relational analyses. The results demonstrate that 69.5% of existing buildings are completely destroyed, and the rate of fatalities is approximately 33% after a nighttime scenario. Finally, the same procedure was applied to an actual earthquake (first event on the 11th of August, 2012 of the Ahar twin earthquakes) to validate the presented model based on two aspects: (1) building damages and (2) seismic intensity.  相似文献   

3.
本文对天津市典型老旧民居进行了抗震能力分析,介绍了它们的结构形式,抗震性能。并根据相应的规范和标准,对其中一幢民居楼进行了抗震能力分析和鉴定。研究表明,在遭受Ⅶ度小震时,顶层中等破坏;Ⅷ度中震时,顶层严重破坏;Ⅸ度大震时,顶层倒塌。建议尽快进行抗震加固。本文指出了抗震薄弱环节,并给出了抗震加固措施。本文可为天津市典型老旧民居的抗震加固提供科学依据和技术支持。  相似文献   

4.
Ground motion scenarios for Mt. Etna are created using synthetic simulations with the program EXSIM. A large data set of weak motion records is exploited to identify important input parameters which govern the modeling of wave propagation effects, such as Q-values, high frequency cut-off and geometrical spreading. These parameters are used in the simulation of ground motion for earthquakes causing severe damage in the area. Two seismotectonic regimes are distinguished. Volcano-tectonic events, though being of limited magnitude (Mmax ca. 5), cause strong ground shaking for their shallow foci. Being rather frequent, these events represent a considerable threat to cities and villages on the flanks of the volcano. A second regime is related to earthquakes with foci in the crust, at depths of 10–30 km, and magnitudes ranging from 6 to 7. In our synthetic scenarios, we chose two examples of volcano-tectonic events, i.e. the October 29, 2002, Bongiardo event (I = VIII) and the May 8, 1914, Linera earthquake (I = IX–X). A further scenario regards the February 20, 1818 event, considered representative for stronger earthquakes with foci in the crust. We were able to reproduce the essential features of the macroseismic field, in particular accounting for the possibility of strong site effects. We learned that stress drop estimated for weak motion events is probably too low to explain the intensity of ground motion during stronger earthquakes. This corresponds to findings reported in the literature claiming an increase of stress drop with earthquake size.  相似文献   

5.
Worldwide experience repeatedly shows that damages in structures caused by earthquakes are highly dependent on site condition and epicentral distance. In this paper, a 21-storey shear wall-structure built in the 1960s in Hong Kong is selected as an example to investigate these two effects. Under various design earthquake intensities and for various site conditions, the fragility curves or damage probability matrix of such building is quantified in terms of the ductility factor, which is estimated from the ratio of storey yield shear to the inter-storey seismic shear. For high-rise buildings, a higher probability of damage is obtained for a softer site condition, and damage is more severe for far field earthquakes than for near field earthquakes. For earthquake intensity of VIII, the probability of complete collapse (P) increases from 1 to 24% for near field earthquakes and from 1 to 41% for far field earthquakes if the building is moved form a rock site to a site consisting a 80 m thick soft clay. For intensity IX, P increases from 6 to 69% for near field earthquake and from 14 to 79% for far field earthquake if the building is again moved form rock site to soft soil site. Therefore, site effect is very important and not to be neglected. Similar site and epicentral effects should also be expected for other types of high-rise structures.  相似文献   

6.
A vulnerability analysis of some historical and monumental buildings in the city of Málaga is presented in this paper. More than twenty of these monuments were severely damaged or completely destroyed due to the large earthquake (I max = VIII–IX) occurred in the Málaga region in October 1680. The vulnerability index methodology has been used in this paper. This technique is based on statistical data from seismic damage caused to Italian monuments for the past 30?years. For each building, vulnerability curves have been obtained and damage grades have been estimated. A comparison has been carried out between the expected damage grades and the damage observed from past earthquakes, in order to check the feasibility of applying this methodology to Spanish monuments. This comparison has been possible due to the fact that detailed seismic damage information exists for monuments in the city of Málaga that still exist today, which is a very uncommon case in Spain. Results show a good consistency between expected and observed damage, especially for the churches type. Two seismic scenarios have been proposed for the city centre, one deterministic and one probabilistic, where 54 historical and modern buildings have been analyzed. Both scenarios show worrying results, especially for the types of churches, chapels and towers, where expected high probabilities of suffering very heavy damage or even collapse have been obtained. It is highly recommended to take the necessary measures, in the hope of trying to avoid the possible damage that can be expected from future earthquakes.  相似文献   

7.
云南鲁甸6.5级地震灾害特点浅析   总被引:5,自引:4,他引:1  
通过对2014年8月3日云南鲁甸6.5级地震震害开展实地调查,对灾区破坏情况进行总体介绍,并就各烈度区特征和建筑物震害、地震地质灾害、工程结构震害进行分析,初步得出本次地震的一些震害特点.一是灾区人口密度大,人员死亡较集中.人员死亡主要集中在Ⅷ和Ⅸ度区.二是地震振动强,灾区破坏严重.本次地震震源深度12km,极震区烈度高达Ⅸ度,震源破裂在11s内集中释放.三是抗震能力弱,房屋破坏严重.灾区属国家级贫困区,农村民居抗震能力弱,且多数民房坐落在河谷陡坡上,边坡效应加重房屋震害,重灾区砖木和土木房屋成片损毁、倒塌.四是灾区条件恶劣,救灾难度大.震区活动断裂密集发育、地质破碎疏松、地形崎岖不平,又恰值雨季,诱发极其严重次生地质灾害,导致人员伤亡,造成灾区大面积交通、通信、电力中断,救援物资与救援力量无法及时发挥作用.  相似文献   

8.
2013年四川芦山7.0级地震烈度遥感评估   总被引:10,自引:0,他引:10       下载免费PDF全文
2013年4月20日四川芦山MS7.0级地震发生后,在灾区应急获取了多种高分辨率航空和无人机遥感影像,并快速解译提取了灾区建筑物震害信息.采用地震烈度遥感定量评估方法,利用2008年汶川8.0级地震等震后震害遥感解译和现场调查研究确定的经验震害遥感定量评估模型,获得了芦山地震灾区126个主要居民点的地震烈度遥感评估结果,并据此圈画了地震烈度分布遥感评估图.结果显示,本次地震Ⅸ度区面积约150km2,Ⅷ度区面积约900km2.该结果在第一时间(4月21日晚)提供给了中国地震局地震现场应急指挥部.对比分析显示,地震烈度遥感快速评估结果与中国地震局4月25日公布的地震烈度图,以及与笔者在现场实地进行的建筑物震害详细调查结果基础上评定的地震烈度具有较高的一致性.表明强烈地震发生后,借助于快速获取的灾区高分辨率遥感影像,可以快速估计地震烈度分布,对地震灾区灾情估计和抗震救灾工作具有十分重要的参考意义.  相似文献   

9.
The Roman city Augusta Raurica is located East of Basel, Switzerland. One important topic of the city’s history concerns the hypothesis of an earthquake striking the city in the middle of the third century a.d. This idea had been formulated according to archaeological features and findings, but had not been tested so far. A selection of the archaeological features were reviewed and dated in order to test the hypothesis of a single event. However, archaeological investigations do not draw a conclusive picture; it could not be proven that all features of possible destruction date to the same event. Detailed seismological investigations were performed. These included geological and geotechnical mapping of the unconsolidated sediments. Important parameters such as the thickness and composition of the unconsolidated sediments, the terrain topography and the topography of the bedrock surface were mapped. Ambient vibration H/V measurements provided the fundamental frequency of resonance for the unconsolidated sediments. The velocity of shear waves traveling through sediments is the controlling parameter for amplification of seismic waves. This material property is estimated using the relation between the ellipticity of the fundamental mode Rayleigh wave and the H/V curve. From all information we compiled a three-dimensional model of the surface geology. This model is used to simulate earthquake ground motion and amplification effects in the city, and to map the variability of the amplification. In the part of the city where possible earthquake damage was recognized, amplification occurs in the frequency band of building resonance (2–8 Hz). In the other part of the city amplification occurs much above the building’s resonance. From 1D modelling we estimate a difference in spectral amplification of about a factor of 2.5 to 3 between the two parts of the city. This corresponds approximately to a difference in macroseismic intensity of one unit. 3D modelling showed a large variability of ground motion within very close distance in the part of the city where possible earthquake damage was recognized. The maximum amplification reaches values up to a factor of nine, which is due to 3D effects and the choice of using vertically incident waves. Finally, all paleoseismological findings in the area of Basel were reviewed in order to find indications of a large event in the time-period of interest. Paleoseismological findings provide no hints to a large earthquake in the third century. If we assume that an earthquake caused at least part of the identified damage in Augusta Raurica, we have to assign to this event a magnitude Mw of about 6.0 or even lower, that is much smaller than the value of 6.9 that is actually in the Swiss earthquake catalogue. The earthquake source of this event must then be very close to the site of Augusta Raurica and a strong site-effect occurred in one part of the city.  相似文献   

10.
The densely populated city of Thessaloniki (Northern Greece) is situated in~the vicinity of active seismic faults, capable of producing moderate to strong earthquakes. The city has been severely affected by such events several times during the last 15 centuries. The most recent event occurred on 20 June 1978 (M6.5) in the Mygdonian graben, with an epicentral distance of about 30 km, causing extended damage in the city, with macroseismic intensities between MSK V+ and VIII+. The majority of buildings affected by the earthquake were of reinforced-concrete typology, typical to many southern European metropolitan areas. The source properties of the normal-faulting causative event and the source-to-city propagation path are well known from previous studies. The soil structure under the metropolitan area of Thessaloniki is assigned NEHRP categories B, C, D on the basis of geotechnical and geologic information and single-station ambient-noise measurements. A finite source model and various rupture scenarios of the June 1978 earthquake are used to perform forward stochastic modeling of strong ground motion in terms of peak ground and spectral acceleration. Rock motion is assessed under the city and it is transferred to the surface in accordance with the respective soil category. A GIS tool is employed to compare the estimated strong-motion parameters with the observed detailed damage pattern induced by the 1978 earthquake. For selected natural periods, a satisfactory correlation is established between macroseismic intensity and peak ground and spectral acceleration, thus encouraging the application of stochastic modeling for generating realistic ground-shaking scenarios in metropolitan areas.  相似文献   

11.
Archeological, archeoseismological, and seismotectonic studies were carried out in Salachik, the ancient capital of the Crimean Khans, on the outskirts of the modern city of Bakhchysarai, Crimea. The following damage and deformations of medieval buildings were observed: tilted building walls, shifted elements of building structures, rotation of fragments of walls and building blocks around the vertical axis, considerable deformations of arch structures, and fissures running through several rows of building blocks. These deformations are of a seismogenic nature. Traces of at least two strong ancient earthquakes were revealed in the medieval monuments of Salachik. Based on analysis of kinematic indicators, it is found that the maximum seismic intensity (VIII ≤ I 0 ≤ IX points) was due to an earthquake occurred in the west. Based on historical seismologic data, one of the two earthquakes is dated by April 30, 1698. Also, structural damage to buildings in Salachik was caused by Crimean earthquakes in 1927. The findings can be used for a comprehensive assessment of seismic hazards on the Crimean Peninsula.  相似文献   

12.
As a result of population growth and consequent urbanization, the number of high‐rise buildings is rapidly growing worldwide resulting in increased exposure to multiple‐scenario earthquakes and associated risk. The wide range in frequency contents of possible strong ground motions can have an impact on the seismic response, vulnerability and limit states definitions of RC high‐rise wall structures. Motivated by the pressing need to derive more accurate fragility relations to be used in seismic risk assessment and mitigation of such structures, a methodology is proposed to obtain reliable, Seismic Scenario‐Structure‐Based (SSSB) definitions of limit state criteria. A 30‐story wall building, located in a multi‐seismic scenario study region, is utilized to illustrate the methodology. The building is designed following modern codes and then modeled using nonlinear fiber‐based approach. Uncertainty in ground motions is accounted for by the selection of forty real earthquake records representing two seismic scenarios. Seismic scenario‐based building local response at increasing earthquake intensities is mapped using Multi‐Record Incremental Dynamic Analyses (MRIDAs) with a new scalar intensity measure. Net Inter‐Story Drift (NISD) is selected as a global damage measure based on a parametric study involving seven buildings ranging from 20 to 50 stories. This damage measure is used to link local damage events, including shear, to global response under different seismic scenarios. While the study concludes by proposing SSSB limit state criteria for the sample building, the proposed methodology arrives at a reliable definition of limit state criteria for an inventory of RC high‐rise wall buildings under multiple earthquake scenarios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A study on damage scenarios for residential buildings in Catania city   总被引:2,自引:0,他引:2  
The main purpose of this study is to obtain the damage scenario for residential buildings in the occurrence of a destructive earthquake (M = 7+) in the city area of Catania, Eastern Sicily, and to illustrate the comparative performance of two alternative methods used for this purpose. The methods are representative of two different approaches to estimating the seismic vulnerability of structures, i.e., an empirical approach based on statistical score assignments (widely used in Italy and other countries) and a more recent, mechanical approach that uses displacement limit states associated with well-defined thresholds of structural damage. A special concern for seismic vulnerability in Catania is caused by the fact that earthquake design norms were enforced in its municipal area only since 1981. We emphasise some typical problems encountered in earthquake scenario work, such as the difficulty of assembling a reliable building inventory, and the uncertainties inherent in the vulnerability assessments through different probabilistic assumptions. Different criteria for the representation of damage are applied and discussed. It is shown that the main scenarios obtained by the two methods are in reasonable agreement, provided a suitable percentile level for damage is chosen in the statistical score assignment approach.  相似文献   

14.
Earthquakes have a greater effect on society than most people think. These effects range from structural damages to economic impacts and fatalities. An earthquake only lasts for a few seconds and the aftershocks may continue for days, but the damage does continue for years. Residential site safety and earthquake damage assessment studies play a crucial role in developing reliable rehabilitation and development programs, improving preparedness and mitigating losses in urbanized areas. The extremely densely populated metropolis of Tehran, which totals of 7,768,561 for 22 districts (according to the 2006 population census), coupled with the fragility of houses and infrastructure, highlight the necessity of a reliable earthquake damage assessment based on essential datasets, such as building resistance attributes, building population, soil structures, streets network and hazardous facilities. This paper presents a GIS-based model for earthquake loss estimation for a district in Tehran, Iran. Damages to buildings were calculated only for the ground shaking effect of one of the region's most active faults, the Mosha Fault in a likely earthquake scenario. Earthquake intensity for each building location was estimated based on attenuation relation and the ratio of damage was obtained from customized fragility curves. Human casualties and street blockages caused by collapsed buildings were taken into account in this study, as well. Finally, accessibility verification found locations without clear passages for temporary settlements by buildings via open streets. The model was validated using the 2003 Bam earthquake damages. The proposed model enables the decision-makers to make more reliable decisions based on various spatial datasets before and after an earthquake occurs. The results of the earthquake application showed total losses as follows: structural damages reaching 64% of the building stock, a death rate of 33% of all the residents, a severe injury rate reaching 27% of the population and street closures upwards of 22% due to building collapse.  相似文献   

15.
Between the late nineteenth century and the early twentieth century, Barcelona was expanded, occupying the terrains connecting the old walled city and the nearby towns of the plateau of Barcelona. At that time, a large number of unreinforced masonry buildings were constructed and nowadays many of them are still used as dwellings. Though built individually, these buildings are connected to adjacent buildings, forming blocks composed of aggregates. In order to analyze the seismic behavior of isolated buildings and aggregates, two typical central buildings and one typical corner building have been chosen. The two central buildings and the corner building are referred as C1, C2, and E buildings. Two corner buildings and two central buildings have been connected in order to simulate a block side. This aggregate is referred as AGG and it is composed by the following sequence of individual buildings: E-C1-C2-E. Original plans and drawings of existing buildings are then used to model these buildings. The modeled buildings have five stories. Standard pushover analyses lead to evaluate their seismic performance by means of capacity spectra and fragility curves. The analysis has been carried out in the parallel (Ux) and transversal (Uy) directions to the street. Then, a capacity spectrum based method is used to analyze the seismic behavior of these buildings considered as individual buildings and as an aggregate. Two earthquake scenarios are considered. The first one is a deterministic scenario which is based on a historical earthquake occurred in 1,824, 25 km away from the city and the second one is a probabilistic scenario, which represents the ground motion with a probability of occurrence of 10% in 50 years. The soil local effects have been also considered and both scenarios have been used to assess the expected damage. Four non-null damage states are considered: slight (1), moderate (2), severe (3) and extensive-to-collapse (4). For the type of soil where most of the buildings are, and in the Ux direction, the four buildings show a similar behavior. The mean damage grade is 2.3 for the deterministic scenario and 2.7 for the probabilistic one. This means that moderate to severe damage is expected in both cases; furthermore, in the case of the deterministic scenario more than 10% of the buildings would suffer extensive-to-collapse damage and nearly 20% for the probabilistic scenario, confirming the high vulnerability of such buildings. The differences in the expected damage are due to the significant different characteristics of the response spectra of the earthquake scenarios in the range of the fundamental periods of the buildings.  相似文献   

16.
On March 4, 1977, an earthquake with a moment magnitude M w 7.4 at a hypocentral depth of 94 km hit the Vrancea region (Romania). In Bucharest alone, the earthquake caused severe damage to 33,000 buildings while 1,424 people were killed. Under the umbrella of the SAFER project, the city of Bucharest, being one of the larger European cities at risk, was chosen as a test bed for the estimation of damage and connected losses in case of a future large magnitude earthquake in the Vrancea area. For the conduct of these purely deterministic damage and loss computations, the open-source software SELENA is applied. In order to represent a large event in the Vrancea region, a set of deterministic scenarios were defined by combining ranges of focal parameters, i.e., magnitude, focal depth, and epicentral location. Ground motion values are computed by consideration of different ground motion prediction equations that are believed to represent earthquake attenuation effects in the region. Variations in damage and loss estimates are investigated through considering different sets of building vulnerability curves (provided by HAZUS-MH and various European authors) to characterize the damaging behavior of prevalent building typologies in the city of Bucharest.  相似文献   

17.
Microzonation of the city of Basel   总被引:1,自引:0,他引:1  
During the past centuries, the city of Basel has suffered damage caused by earthquakes. One extraordinary event described in historical documents is the strong earthquake which occurred in 1356. The 1356 event, one of the strongest earthquakes in northwest-Europe, was obviously much stronger than the low-magnitude earthquakes observed in the area during this century. Even though the present seismicity in the Basel area is low, strong earthquakes have to be expected due to the city's geographical location close to the northern boundary of the African-European convergence zone, at the southern end of the Rhinegraben. A crucial step towards preparedness for future events and mitigation of earthquake risk involves a microzonation study of the city. The study is carried out in three steps: (1) a detailed mapping of the geology and geotechnical properties of the area, (2) measurement, interpretation and modelling of ambient noise data, and (3) numerical modelling of expected ground motions during earthquakes. A qualitative microzonation of the centre of Basel is presented, and it is discussed by comparing it to the historically reported damage of the 1356 earthquake.  相似文献   

18.
In this paper we present a site effects analysis carried out in Málaga city’s historical centre (Southern Spain). Two different methodologies have been used: an experimental technique using ambient noise measurements and a 1D numerical method. Soil fundamental frequencies have been obtained from the first technique, and soil transfer functions have been calculated from the numerical methodology. In order to use these results in vulnerability studies, intensity increments for each type of soil have also been estimated. From this information, a seismic microzonation has been proposed for the city centre, classified in six types of soils. Soil fundamental frequencies vary between above 5.0Hz at the hills of the city (where rock arises on the surface), and 1.0Hz near Guadalmedina river. The results show regions with high intensity increments (ΔI = +1.5) corresponding to areas which suffered heavy damage in the 1680 earthquake (Imax = VIII–IX). Moreover, most of the monuments and historical buildings in the city are located in these high risk areas. Results underline the importance of this kind of studies for seismic risk mitigation, historical preservation and emergency planning in the main cities’ historical centres.  相似文献   

19.
The area of the Koryak Autonomous Okrug was hit by an M S 7.7 earthquake on April 20(21), 2006, the largest to have occurred in the area during the period of historical and instrumental observation. This event is now referred to as the Olyutorskii earthquake. We present results from a study of the associated macroseismic effects as observed in the villages of Korf and Tilichiki. The intensity was IX at Korf and VIII at Tilichiki on the MSK-64 scale.  相似文献   

20.
Recent earthquakes such as the Haiti earthquake of 12 January 2010 and the Qinghai earthquake on 14 April 2010 have highlighted the importance of rapid estimation of casualties after the event for humanitarian response. Both of these events resulted in surprisingly high death tolls, casualties and survivors made homeless. In the Mw = 7.0 Haiti earthquake, over 200,000 people perished with more than 300,000 reported injuries and 2 million made homeless. The Mw = 6.9 earthquake in Qinghai resulted in over 2,000 deaths with a further 11,000 people with serious or moderate injuries and 100,000 people have been left homeless in this mountainous region of China. In such events relief efforts can be significantly benefitted by the availability of rapid estimation and mapping of expected casualties. This paper contributes to ongoing global efforts to estimate probable earthquake casualties very rapidly after an earthquake has taken place. The analysis uses the assembled empirical damage and casualty data in the Cambridge Earthquake Impacts Database (CEQID) and explores data by event and across events to test the relationships of building and fatality distributions to the main explanatory variables of building type, building damage level and earthquake intensity. The prototype global casualty estimation model described here uses a semi-empirical approach that estimates damage rates for different classes of buildings present in the local building stock, and then relates fatality rates to the damage rates of each class of buildings. This approach accounts for the effect of the very different types of buildings (by climatic zone, urban or rural location, culture, income level etc), on casualties. The resulting casualty parameters were tested against the overall casualty data from several historical earthquakes in CEQID; a reasonable fit was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号