首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
张桂欣  孙柏涛  陈相兆 《地震》2017,37(4):69-79
生命线工程的震害及损失评估工作对于震害防御和震后地震应急工作有着极其重要的意义。 但是, 生命线工程是一个复杂庞大的网络系统, 目前对其开展的震害及损失评估研究工作存在着很大的局限性和不确定性。 本文充分利用研究较多且较系统的建筑物震害及损失评估结果, 结合历次典型历史地震震害中建筑物和生命线震害情况, 通过分析建筑物损失和生命线工程损失的数量关系, 建立二者之间的关联模型; 通过对人口、 GDP、 土地利用等公里网格数据进行分析, 给出中国大陆地区的分区分类原则, 建立分区分类的生命线工程地震直接经济损失分析模型; 基于GIS软件平台, 开发了生命线工程地震直接经济损失分析模块, 利用该模块, 得出了四川省不同地震烈度下的生命线工程直接经济损失空间分布情况。  相似文献   

2.
The 1995 Kobe earthquake caused unprecedented damage to buildings and civil infrastructures in the city of Kobe and its surrounding areas. In order to evaluate the structural damage in this area due to the earthquake, it is important to estimate the distribution of earthquake ground motion. However, since the number of strong ground motion records is not enough in the heavily damaged areas, it is necessary to estimate the distribution using other data sources. In this paper, the fragility curves for low‐rise residential buildings were constructed using the recorded motions and the building damage data from the intensive field survey by the AIJ and CPIJ group. The fragility curves obtained were then employed to estimate the strong motion distribution in the district level for Kobe and the surrounding areas during the earthquake. The results may be useful to investigate the various damages caused by the earthquake. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Building pounding damages observed in the February 2011 Christchurch earthquake are described in this paper. The extent and severity of pounding damage is presented based on a street survey of Christchurch's central business district. Six damage severity levels and two confidence levels are defined to classify the observed damage. Generally, pounding was observed to be a secondary effect. However, over 6% of the total surveyed buildings were observed to have significant or greater pounding damage. Examples of typical and exceptional pounding damage are identified and discussed. Extensive pounding damage was observed in low‐rise unreinforced masonry buildings that were constructed with no building separation. Modern buildings were also endangered by pounding when building separations were infilled with solid architectural flashings. The damage caused by these flashings was readily preventable. The observed pounding damage is compared to that observed in the September 2010 Darfield earthquake to explore if the damage could have been predicted. It is found that pounding prone buildings can be identified with reasonable accuracy by comparing configurations to characteristics previously noted by researchers. However, detailed pounding damage patterns cannot currently be precisely predicted by these methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The Egyptian economy and culture are centralized in the Greater Cairo region. Thus, it is essential that the built environment is able to withstand the possible earthquake events that may occur, and to continue to operate and function. Failure to do so would result in significant economic losses. This study presents the latter stages of a multi-tiered probabilistic earthquake loss estimation model for Greater Cairo and builds upon previous studies of the seismic hazard. In order to assess possible damage to the built environment, and the resulting economic losses, the vulnerability of the built environment is first evaluated. Through the use of satellite images, Egypts building census, previous studies and field surveys, a building-stock inventory is compiled. This building inventory is classified according to structural type and height, and is geocoded by district. Using existing fragility curves, the vulnerability of the building stock is assessed. In addition, the vulnerability of both the electricity and natural gas networks are assessed, through the use of fragility curves, cut sets and an evaluation of the supply networks. Based on the assessment of direct losses, the losses associated with building damage far exceed those associated with the considered network infrastructure. A macro-economic model is developed that takes into account damage to the built environment and provides estimates of indirect economic losses, as well as enabling the identification of the optimal recovery process. Using this model, it is shown that the indirect losses can exceed direct losses for extreme scenarios where the economy is brought to a near standstill. The framework developed and presented herein can be extended to include more networks, and is also applicable to other regions.  相似文献   

5.
A damage scenario modelling is developed and compared with the damage distribution observed after the 2011 Lorca earthquake. The strong ground motion models considered include five modern ground motion prediction equations (GMPEs) amply used worldwide. Capacity and fragility curves from the Risk-UE project are utilized to model building vulnerability and expected damage. Damage estimates resulting from different combinations of GMPE and capacity/fragility curves are compared with the actual damage scenario, establishing the combination that best explains the observed damage distribution. In addition, some recommendations are proposed, including correction factors in fragility curves in order to reproduce in a better way the observed damage in masonry and reinforce concrete buildings. The lessons learned would contribute to improve the simulation of expected damages due to future earthquakes in Lorca or other regions in Spain with similar characteristics regarding attenuation and vulnerability.  相似文献   

6.
As a result of population growth and consequent urbanization, the number of high‐rise buildings is rapidly growing worldwide resulting in increased exposure to multiple‐scenario earthquakes and associated risk. The wide range in frequency contents of possible strong ground motions can have an impact on the seismic response, vulnerability and limit states definitions of RC high‐rise wall structures. Motivated by the pressing need to derive more accurate fragility relations to be used in seismic risk assessment and mitigation of such structures, a methodology is proposed to obtain reliable, Seismic Scenario‐Structure‐Based (SSSB) definitions of limit state criteria. A 30‐story wall building, located in a multi‐seismic scenario study region, is utilized to illustrate the methodology. The building is designed following modern codes and then modeled using nonlinear fiber‐based approach. Uncertainty in ground motions is accounted for by the selection of forty real earthquake records representing two seismic scenarios. Seismic scenario‐based building local response at increasing earthquake intensities is mapped using Multi‐Record Incremental Dynamic Analyses (MRIDAs) with a new scalar intensity measure. Net Inter‐Story Drift (NISD) is selected as a global damage measure based on a parametric study involving seven buildings ranging from 20 to 50 stories. This damage measure is used to link local damage events, including shear, to global response under different seismic scenarios. While the study concludes by proposing SSSB limit state criteria for the sample building, the proposed methodology arrives at a reliable definition of limit state criteria for an inventory of RC high‐rise wall buildings under multiple earthquake scenarios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The Cairo earthquake (12 October 1992; m b  = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is “what if this earthquake is repeated today.” In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that “the losses and damages may be increased twice or three times” in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety and collapse prevention in future earthquakes, a five-step road map has been purposed.  相似文献   

8.
砌体建筑群在地震中往往破坏严重损失巨大,合理评估地震作用对不同种类砌体结构造成破坏的风险变得至关重要。传统基于后验概率的地震危险性分析方法忽略了砌体建筑个体差异性的影响,未深入考虑多种震害因子的耦合作用。本文以华南地区砌体建筑群为例,开发了一种集成概率方法来对城市砌体结构的破坏风险进行建模,考虑建筑年代、层数、使用用途和墙厚四类震害因子的耦合影响,采用(Kolmogorov-Smirnov)K-S检验,在设定地震动参数下选取Gaussian分布、Log-Normal分布、Gumbel分布和Beta分布四种概率分布对该地区砌体建筑物的破坏状态概率分布参数进行拟合。通过均方根误差(Root Mean Square Error)RMSE进行拟合优度评价,最终建立基于Gaussian分布和Log-Normal分布的砌体建筑物破坏联合概率模型。最后,以华南地区三个城市典型砌体建筑物为例进行实例对比验证,将基于本文建立的建筑破坏概率模型推算出的砌体建筑群震害矩阵与基于单体结构分析得到的震害矩阵进行对比,与理论值最大偏差为0.033 3。研究表明:本文构建的集成概率方法能够获得更加合理的城市砌体建筑...  相似文献   

9.
A GIS-oriented procedure that may partially illuminate the consequences of a possible earthquake is presented in two main steps (seismic microzonation and vulnerability steps) along with its application in Tabriz (a city in NW Iran). First, the detailed geological, geodetical, geotechnical and geophysical parameters of the region are combined using an Analytic Hierarchy Process (AHP) and a deterministic near-field earthquake of magnitude 7 in the North Tabriz Fault is simulated. This simulation provides differing intensities of ground shaking in the different districts of Tabriz. Second, the vulnerability of buildings, human losses and basic resources for survivors is estimated in district two of the city based on damage functions and relational analyses. The results demonstrate that 69.5% of existing buildings are completely destroyed, and the rate of fatalities is approximately 33% after a nighttime scenario. Finally, the same procedure was applied to an actual earthquake (first event on the 11th of August, 2012 of the Ahar twin earthquakes) to validate the presented model based on two aspects: (1) building damages and (2) seismic intensity.  相似文献   

10.
Many historic buildings in old urban centers in Eastern Canada are made of stone masonry reputed to be highly vulnerable to seismic loads.Seismic risk assessment of stone masonry buildings is therefore the first step in the risk mitigation process to provide adequate planning for retrofit and preservation of historical urban centers.This paper focuses on development of analytical displacement-based fragility curves reflecting the characteristics of existing stone masonry buildings in Eastern Canada.The old historic center of Quebec City has been selected as a typical study area.The standard fragility analysis combines the inelastic spectral displacement,a structure-dependent earthquake intensity measure,and the building damage state correlated to the induced building displacement.The proposed procedure consists of a three-step development process:(1) mechanics-based capacity model,(2) displacement-based damage model and(3) seismic demand model.The damage estimation for a uniform hazard scenario of 2% in 50 years probability of exceedance indicates that slight to moderate damage is the most probable damage experienced by these stone masonry buildings.Comparison is also made with fragility curves implicit in the seismic risk assessment tools Hazus and ELER.Hazus shows the highest probability of the occurrence of no to slight damage,whereas the highest probability of extensive and complete damage is predicted with ELER.This comparison shows the importance of the development of fragility curves specific to the generic construction characteristics in the study area and emphasizes the need for critical use of regional risk assessment tools and generated results.  相似文献   

11.
2008年汶川 8.0级大地震造成了大量的房屋破坏,尤其村镇房屋的破坏最为严重.本文基于对四川省青川县部分乡镇村镇房屋震害的实地调查,对砖混结构房屋的震害从地形、地基基础和结构三方面进行了震害总结,分析了典型震害的成因,指出了目前村镇房屋建设存在的问题,最后对提高村镇民房的地震安全提出了一些建议.  相似文献   

12.
Between the late nineteenth century and the early twentieth century, Barcelona was expanded, occupying the terrains connecting the old walled city and the nearby towns of the plateau of Barcelona. At that time, a large number of unreinforced masonry buildings were constructed and nowadays many of them are still used as dwellings. Though built individually, these buildings are connected to adjacent buildings, forming blocks composed of aggregates. In order to analyze the seismic behavior of isolated buildings and aggregates, two typical central buildings and one typical corner building have been chosen. The two central buildings and the corner building are referred as C1, C2, and E buildings. Two corner buildings and two central buildings have been connected in order to simulate a block side. This aggregate is referred as AGG and it is composed by the following sequence of individual buildings: E-C1-C2-E. Original plans and drawings of existing buildings are then used to model these buildings. The modeled buildings have five stories. Standard pushover analyses lead to evaluate their seismic performance by means of capacity spectra and fragility curves. The analysis has been carried out in the parallel (Ux) and transversal (Uy) directions to the street. Then, a capacity spectrum based method is used to analyze the seismic behavior of these buildings considered as individual buildings and as an aggregate. Two earthquake scenarios are considered. The first one is a deterministic scenario which is based on a historical earthquake occurred in 1,824, 25 km away from the city and the second one is a probabilistic scenario, which represents the ground motion with a probability of occurrence of 10% in 50 years. The soil local effects have been also considered and both scenarios have been used to assess the expected damage. Four non-null damage states are considered: slight (1), moderate (2), severe (3) and extensive-to-collapse (4). For the type of soil where most of the buildings are, and in the Ux direction, the four buildings show a similar behavior. The mean damage grade is 2.3 for the deterministic scenario and 2.7 for the probabilistic one. This means that moderate to severe damage is expected in both cases; furthermore, in the case of the deterministic scenario more than 10% of the buildings would suffer extensive-to-collapse damage and nearly 20% for the probabilistic scenario, confirming the high vulnerability of such buildings. The differences in the expected damage are due to the significant different characteristics of the response spectra of the earthquake scenarios in the range of the fundamental periods of the buildings.  相似文献   

13.
Worldwide experience repeatedly shows that damages in structures caused by earthquakes are highly dependent on site condition and epicentral distance. In this paper, a 21-storey shear wall-structure built in the 1960s in Hong Kong is selected as an example to investigate these two effects. Under various design earthquake intensities and for various site conditions, the fragility curves or damage probability matrix of such building is quantified in terms of the ductility factor, which is estimated from the ratio of storey yield shear to the inter-storey seismic shear. For high-rise buildings, a higher probability of damage is obtained for a softer site condition, and damage is more severe for far field earthquakes than for near field earthquakes. For earthquake intensity of VIII, the probability of complete collapse (P) increases from 1 to 24% for near field earthquakes and from 1 to 41% for far field earthquakes if the building is moved form a rock site to a site consisting a 80 m thick soft clay. For intensity IX, P increases from 6 to 69% for near field earthquake and from 14 to 79% for far field earthquake if the building is again moved form rock site to soft soil site. Therefore, site effect is very important and not to be neglected. Similar site and epicentral effects should also be expected for other types of high-rise structures.  相似文献   

14.
地震发生后,人口空间分布密度是决定救援力量部署的重要依据。然而,高精度人口空间分布数据存在获取和更新困难的问题,缺少有效的解决途径。以银川市西夏区为例,基于高空间分辨率遥感影像,通过建筑物解译与实地调查相结合的方式获取住宅建筑物信息,建立人口与住宅建筑物之间的关系模型,得到更客观真实的人口空间分布情况。研究结果表明,以高空间分辨率遥感影像解译住宅建筑物作为人口空间分布指示因子建模,得到的总体预测人口误差率为3.56%,人口平均相对误差率为9.19%,研究结果具有较高的可靠性,为震前灾害风险评估和震后灾情快速评估提供可靠的人口空间分布数据。  相似文献   

15.
This study focuses on the seismic safety evaluation of masonry buildings in Turkey for in‐plane failure modes using fragility curves. Masonry buildings are classified and a set of fragility curves are generated for each class. The major structural parameters in the classification of masonry buildings are considered as the number of stories, load‐bearing wall material, regularity in plan and the arrangement of walls (required length, openings in walls, etc.), in accordance with the observations from previous earthquakes and field databases. The fragility curves are generated by using time history (for demand) and pushover (for capacity) analyses. From the generated sets of fragility curves, it is observed that the damage state probabilities are significantly influenced from the number of stories and wall material strength. In the second stage of the study, the generated fragility curves are employed to estimate the damage of masonry buildings in Dinar after the 1995 earthquake. The estimated damage by fragility information is compared with the inspected visual damage as assessed from the Damage Evaluation Form. For the quantification of fragility‐based damage, a single‐valued index, named as ‘vulnerability score’ (VS), is proposed. There seems to be a fair agreement between the two damage measures. In addition to this, decisions regarding the repair or demolition of masonry buildings in Dinar due to visual damage inspection are on comparable grounds with the relative measure obtained from VS of the same buildings. Hence, the fragility‐based procedure can provide an alternative for the seismic safety evaluation of masonry buildings in Turkey. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Health care facilities may undergo severe and widespread damage that impairs the functionality of the system when it is stricken by an earthquake. Such detrimental response is emphasized either for the hospital buildings designed primarily for gravity loads or without employing base isolation/supplemental damping systems. Moreover, these buildings need to warrant operability especially in the aftermath of moderate‐to‐severe earthquake ground motions. The provisions implemented in the new seismic codes allow obtaining adequate seismic performance for the hospital structural components; nevertheless, they do not provide definite yet reliable rules to design and protect the building contents. To date, very few experimental tests have been carried out on hospital buildings equipped with nonstructural components as well as building contents. The present paper is aimed at establishing the limit states for a typical health care room and deriving empirical fragility curves by considering a systemic approach. Toward this aim, a full scale three‐dimensional model of an examination (out patients consultation) room is constructed and tested dynamically by using the shaking table facility of the University of Naples, Italy. The sample room contains a number of typical medical components, which are either directly connected to the panel boards of the perimeter walls or behave as simple freestanding elements. The outcomes of the comprehensive shaking table tests carried out on the examination room have been utilized to derive fragility curves based on a systemic approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
建筑物受损信息是地震受灾程度评估的基础,针对传统建筑物表面信息识别人工成本高、效率低等问题,受深度学习提取建筑物影像的启发,提出利用无人机倾斜摄影模型与深度学习相结合的方法提取震后建筑物表面破损信息。以2019年长宁6.0级地震为例,选用双河镇震后倾斜摄影模型切片图为数据源,对比分析面向对象分类方法、VGG-16模型和DeeplabV3+模型对建筑物表面损毁信息的提取结果。分析结果表明,针对建筑物表面破损信息的提取,尤其是细小裂缝的提取,语义分割网络DeeplabV3+模型具有较强的优势(准确率96.93%、召回率96.85%、总体精度96.89%),可实现建筑物表面破损信息的有效提取,具有较强的应用价值。  相似文献   

18.
王栋梁  王晓青  窦爱霞  丁香 《地震》2007,27(3):105-110
建筑物震害程度的判定是进行地震灾害损失评估的基础, 震害指数是建筑物震害程度的定量表示方式, 是房屋抗震性能的直观表现。 震害指数的研究对于震害预测和地震灾害损失评估都有重要的意义。 文中收集、 分析并处理了2001—2004年中国地震灾害损失现场调查与评估的详细资料, 以调查点为单位计算了各种结构类型房屋的平均震害指数, 建立了中国西部地区不同结构类型房屋的平均震害指数向未经加固的砖混和砖木结构房屋的平均震害指数转换的数学关系, 其结果对地震灾害及其损失的快速评估与现场评估具有一定的参考作用。  相似文献   

19.
由于在变形和累积耗能的建筑地震受损程度评估模型,是将建筑划分为五个状态水平,未研究建筑环境性能,评估结果误差较大。因此设计基于BIM的建筑地震受损程度评估模型,采用基于BIM的建筑环境研究与评估方法,考虑建筑环境性能,基于这个思路,依据混凝土单轴Mazars损伤模型,获取三轴状态中的损伤演化方程,得到应变大于损伤阈值时损伤演化方程增量形式,构建混凝土损伤评估模型。经实验证明,所设计模型在地震峰值加速度小于0.31g时,建筑结构大致无缺,在峰值加速度是0.61g时,建筑地震受损指数超过0.8,建筑倒塌;所设计模型评估的平均误差低于0.03,平均评估时间是2.86 s,说明所设计模型能够有效评估建筑地震受损程度,且精度和效率较高。  相似文献   

20.
以汶川地震地表形变带的实地测量数据为基础,结合沿实测地震地表变形剖面建筑物破坏情况的调查与测量,分析了不同地震地表变形类型及其建筑物破坏特征,定量化地讨论了地表变形梯度与建筑物破坏程度间的关系.提出无论地震地表变形表现为何种类型的断层陡坎,强变形均局部化在宽10~30 m的地表破裂带内;建筑物受损情况最直接的影响是建筑物所处地点的地表变形梯度,地表变形梯度大于0.1的地段,建筑物均完全被摧毁;地表变形梯度在0.07~0.1间的地段,建筑物遭受严重损坏,产生倾斜及强烈变形等;地表变形梯度在0.03~0.07间的地段,建筑物可能受到中度损坏,产生倾斜及变形等,具有抗震设防能力的建筑物一般不会倒塌;地表变形梯度小于0.03的地段具有抗震设防能力的构建筑物一般只会受到轻度损伤或基本完好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号