首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高频面波方法的若干新进展   总被引:12,自引:5,他引:7       下载免费PDF全文
面波多道分析方法(MASW)通过分析高频瑞雷波确定浅地表剪切波速度.在过去的20年中,由于该方法具有非侵入性、无损、高效及价格低的特点,越来越受到浅地表地球物理和地质工程学界的重视,视为未来最有希望的技术之一.这篇综述论文将介绍中国地质大学(武汉)浅地表地球物理团队近年来在研究高频面波的传播理论和应用中取得的部分成果.非几何波是一种仅存在于浅地表介质,尤其是未固结的沉积物中的独特的地震波.它的存在对快速而准确地获得表层S波速度有一定价值.我们的研究表明非几何波是一种具有频散特性的泄漏波.泄漏波的存在可能导致将其误认为瑞雷波的基阶或高阶能量,从而造成模式误判.这种模式误判会导致错误的反演结果.我们通过求取高基阶分离后的瑞雷波格林函数证明虚震源法瑞雷波勘探的可行性.这个结果将极大地降低野外瑞雷波勘探成本.勒夫波多道分析方法(MALW)中未知参数比瑞雷波的少,这使得勒夫波的频散曲线比瑞雷波的简单.因此,勒夫波反演更稳定,非唯一性更低.勒夫波数据生成的能量图像通常比瑞雷波的清晰,并具有更高的分辨率,从而可以更容易地拾取精确的勒夫波的相速度.利用雅克比矩阵分析波长与探测深度的关系表明对相同波长的基阶模式而言,瑞雷波的探测深度是勒夫波的1.3~1.4倍;而两种波的相同波长的高阶模式波的探测深度相同.我们也尝试了时间域勒夫波反演.按照勒夫波分辨率将地球模型剖分成了不同尺寸的块体,利用反卷积消除了地震子波对勒夫波波形的影响,通过更新每个块体的S波速度来拟合勒夫波波形,从而获得地下S波速度模型.该方法不基于水平层状模型假设,适用于任意二维介质模型.  相似文献   

2.
As theory dictates, for a series of horizontal layers, a pure, plane, horizontally polarized shear (SH) wave refracts and reflects only SH waves and does not undergo wave-type conversion as do incident P or Sv waves. This is one reason the shallow SH-wave refraction method is popular. SH-wave refraction method usually works well defining near-surface shear-wave velocities. Only first arrival information is used in the SH-wave refraction method. Most SH-wave data contain a strong component of Love-wave energy. Love waves are surface waves that are formed from the constructive interference of multiple reflections of SH waves in the shallow subsurface. Unlike Rayleigh waves, the dispersive nature of Love waves is independent of P-wave velocity. Love-wave phase velocities of a layered earth model are a function of frequency and three groups of earth properties: SH-wave velocity, density, and thickness of layers. In theory, a fewer parameters make the inversion of Love waves more stable and reduce the degree of nonuniqueness. Approximating SH-wave velocity using Love-wave inversion for near-surface applications may become more appealing than Rayleigh-wave inversion because it possesses the following three advantages. (1) Numerical modeling results suggest the independence of P-wave velocity makes Love-wave dispersion curves simpler than Rayleigh waves. A complication of “Mode kissing” is an undesired and frequently occurring phenomenon in Rayleigh-wave analysis that causes mode misidentification. This phenomenon is less common in dispersion images of Love-wave energy. (2) Real-world examples demonstrated that dispersion images of Love-wave energy have a higher signal-to-noise ratio and more focus than those generated from Rayleigh waves. This advantage is related to the long geophone spreads commonly used for SH-wave refraction surveys, images of Love-wave energy from longer offsets are much cleaner and sharper than for closer offsets, which makes picking phase velocities of Love waves easier and more accurate. (3) Real-world examples demonstrated that inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves. This is due to Love-wave’s independence of P-wave velocity, which results in fewer unknowns in the MALW method compared to inversion methods of Rayleigh waves. This characteristic not only makes Love-wave dispersion curves simpler but also reduces the degree of nonuniqueness leading to more stable inversion of Love-wave dispersion curves.  相似文献   

3.
Love-wave propagation has been a topic of interest to crustal, earthquake, and engineering seismologists for many years because it is independent of Poisson’s ratio and more sensitive to shear (S)-wave velocity changes and layer thickness changes than are Rayleigh waves. It is well known that Love-wave generation requires the existence of a low S-wave velocity layer in a multilayered earth model. In order to study numerically the propagation of Love waves in a layered earth model and dispersion characteristics for near-surface applications, we simulate high-frequency (>5 Hz) Love waves by the staggered-grid finite-difference (FD) method. The air–earth boundary (the shear stress above the free surface) is treated using the stress-imaging technique. We use a two-layer model to demonstrate the accuracy of the staggered-grid modeling scheme. We also simulate four-layer models including a low-velocity layer (LVL) or a high-velocity layer (HVL) to analyze dispersive energy characteristics for near-surface applications. Results demonstrate that: (1) the staggered-grid FD code and stress-imaging technique are suitable for treating the free-surface boundary conditions for Love-wave modeling, (2) Love-wave inversion should be treated with extra care when a LVL exists because of a lack of LVL information in dispersions aggravating uncertainties in the inversion procedure, and (3) energy of high modes in a low-frequency range is very weak, so that it is difficult to estimate the cutoff frequency accurately, and “mode-crossing” occurs between the second higher and third higher modes when a HVL exists.  相似文献   

4.
冀战波  王宝善 《地球物理学报》1954,63(11):4097-4113
2015年8月12日天津滨海新区发生的强烈化学品爆炸造成了巨大的经济损失和社会影响.天津爆炸产生了清晰的大振幅面波信号,分析结果表明这组信号由基阶和高阶面波组成,可以追踪到约135 km外的远处台站.利用这组面波信号分别开展了以下研究:(1)利用附近三个台站记录的四个单频基阶Rayleigh波信号对爆破事件的绝对位置进行了网格搜索,结果与利用GPS测量的位置相差仅0.498 km;(2)分别利用网格搜索和主事件定位法,对两次子事件的相对位置进行了确定,距离约75 m左右,与前人研究结果吻合;(3)从面波记录中测量到36条基阶Rayleigh波、49条第一高阶Rayleigh波、9条基阶Love波和29条第一高阶Love波的频散曲线,并进一步反演获得研究区域地下4 km内的S波速度结构.反演结果显示地表处S波速度低至0.375 km·s-1,在小于1 km的浅地表速度梯度较大,符合典型的盆地结构特征.本文的研究结果为类似爆炸等突发事件快速定位提供了新的思路,有助于灾后救援的迅速展开;同时得到天津滨海新区及周边浅层精细的速度结构,对于地震灾害评估有很大帮助.  相似文献   

5.
The velocity structure of the crust beneath Liaoning province and the Bohai sea in China was imaged using ambient seismic noise recorded by 73 regional broadband stations. All available three-component time series from the 12-month span between January and December 2013 were cross-correlated to yield empirical Green's functions for Rayleigh and Love waves. Phasevelocity dispersion curves for the Rayleigh waves and the Love waves were measured by applying the frequencytime analysis method. Dispersion measurements of the Rayleigh wave and the Love wave were then utilized to construct 2D phase-velocity maps for the Rayleigh wave at8–35 s periods and the Love wave at 9–32 s periods,respectively. Both Rayleigh and Love phase-velocity maps show significant lateral variations that are correlated well with known geological features and tectonics units in the study region. Next, phase dispersion curves of the Rayleigh wave and the Love wave extracted from each cell of the 2D Rayleigh wave and Love wave phase-velocity maps,respectively, were inverted simultaneously to determine the3 D shear wave velocity structures. The horizontal shear wave velocity images clearly and intuitively exhibit that the earthquake swarms in the Haicheng region and theTangshan region are mainly clustered in the transition zone between the low-and high-velocity zones in the upper crust, coinciding with fault zones, and their distribution is very closely associated with these faults. The vertical shear wave velocity image reveals that the lower crust downward to the uppermost mantle is featured by distinctly high velocities, with even a high-velocity thinner layer existing at the bottom of the lower crust near Moho in central and northern the Bohai sea along the Tanlu fault, and these phenomena could be caused by the intrusion of mantle material, indicating the Tanlu fault could be just as the uprising channel of deep materials.  相似文献   

6.
Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity–stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10–16% when the frequency is above 10 Hz due to the velocity dispersion of P and S waves.  相似文献   

7.
Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT.  相似文献   

8.
Phase and group velocities and Q of mantle Love and Rayleigh waves from the 1963 Kurile Islands earthquake (Mw = 8.5) were determined over 37 great circle paths by a time variable filtering technique, in a period range 100–500 s for the fundamental modes and 100–275 s for the first higher modes. The preliminary reference Earth model (PREM) explains reasonably well the average dispersion results for the fundamental Love and Rayleigh waves. There exists a small, but significant inconsistency between the observation and the model for the first higher Love and Rayleigh waves. The Q structure of PREM is inconsistent with the observation for the fundamental Love waves, but explains other observations reasonably well. The dispersion of each mode shows a clear azimuthal dependence from which the four azimuthal windows were established. The phase and group velocity measurements for each window were, in general, shown to be mutually consistent. The azimuthal variations are largest for the first higher Rayleigh waves, indicating strong lateral heterogeneity in the structure of the low velocity zone. The first of the four windows is characterized by the largest fraction of Precambrian shields and the second window by the largest fraction of normal oceans. A comparison of these two windows may give some insight into deep lateral heterogeneity between continents and oceans. The observed phase and group velocities of the first window are systematically higher than those of the second window for the fundamental Love and Rayleigh waves at periods up to 400 s, and for the first higher Love and Rayleigh waves up to 175 s. Their differences are greatest for the first higher Rayleigh waves and least for the fundamental Rayleigh waves. Although the fundamental Rayleigh waves show the least velocity differences, their persistence up to a period of longer than 300 s is in striking contrast with some of the pure path phase velocities derived earlier for continents and oceans. A set of models for continents and oceans. PEM-C and PEM-O are not consistent with our observation. The third azimuthal window is characterized by trench-marginal seas and the fourth window by mountainous areas, typically the Asian high plateaus from northern China to the Middle East through Tibet. A comparison of these two windows gives some information about deep structural differences between subduction zones and continental collision zones, both belonging to plate convergence zones. For the fundamental and the first higher Love waves, the phase and group velocities for the third window are markedly low, whereas those for the fourth window are somewhat comparable to those for the second window. Slow Rayleigh waves are evident for two windows, with the fourth window apparently being the slowest for the fundamental Rayleigh above 200 s and for the first higher Rayleigh. For the fundamental Rayleigh waves, the third window is very slow below 200 s, but becomes progressively fast as the period increases and tends to be the fastest window around 400 s, suggesting a deep seated high velocity anomaly beneath trench-marginal seas. The dispersion characteristics of the fourth window indicate a thick high velocity lid with an extensive low velocity zone beneath it. The shield-like lithosphere, coupled with an extensive low velocity zone, may be a characteristic feature of continental collision zones. The particle motion of the fundamental Love waves was found not to be purely transverse to a great-circle connecting the epicenter to a station. The departure from the purely transverse motion is systematic among different periods, different G arrivals (G2, G3,…) and different stations, which may be interpreted as being due to lateral refraction.  相似文献   

9.
Group velocities estimated from fundamental mode Love and Rayleigh waves are used in a tomography process in central-southern Africa. The waves were generated by eighteen earthquakes, which occurred along the East African Rift and recorded at BOSA, LBTB and SLR seismic stations in southern Africa. The group velocities from Love and Rayleigh waves were isolated using the Multiple Filter Technique (MFT) at the period range of 10 to 50 seconds. The tomography method developed by Ditmar and Yanovskaya (1987) and Yanovskaya and Ditmar (1990), was applied to calculate the lateral distribution of surface wave group velocities in central-southern Africa. The results of the tomographic inversion were plotted as distribution maps. In addition to the maps, I also produced two velocity cross-sections across the area of study. The velocity distribution maps show the regional tectonic units, though with poor resolution. The azimuthal bias of the surface wave paths is reflected in the distribution of the group velocities. The Moho depth appears to correlate with velocities at a period of about 30 s. A low velocity feature observed beneath the Zimbabwe craton implies a thickening upper asthenosphere and lithospheric thinning beneath the Zimbabwe craton. Also estimated was a shear wave velocity model beneath the Zimbabwe craton.  相似文献   

10.
目前完全弹性介质中面波频散特征的研究已较为完善,多道面波分析技术(MASW)在近地表勘探领域也取得了较好的效果,但黏弹介质中面波的频散特征研究依然较少.本文基于解析函数零点求解技术,给出了完全弹性、常Q黏弹和Kelvin-Voigt黏弹层状介质中勒夫波频散特征方程的统一求解方法.对于每个待计算频率,首先根据传递矩阵理论得到勒夫波复频散函数及其偏导的解析递推式,然后在复相速度平面上利用矩形围道积分和牛顿恒等式将勒夫波频散特征复数方程的求根问题转化为等价的连带多项式求解问题,最后通过求解该连带多项式的零点得到多模式勒夫波频散曲线与衰减系数曲线.总结了地层速度随深度递增和夹低速层条件下勒夫波频散特征根在复相速度平面上的运动规律和差异.证明了频散曲线交叉现象在复相速度平面上表现为:随频率增加,某个模式特征根的移动轨迹跨越了另一个模式特征根所在的圆,并给出了这个圆的解析表达式.研究还表明,常Q黏弹地层中的基阶模式勒夫波衰减程度随频率近似线性增加,而Kelvin-Voigt黏弹地层中的基阶模式勒夫波衰减程度随频率近似指数增加,且所有模式总体衰减程度强于常Q黏弹地层中的情况.  相似文献   

11.
Rayleigh-wave phase velocities have been utilized to determine shear (S)-wave velocities in near-surface geophysics since early 1980s. One of the key steps is to calculate theoretical dispersion curves of an earth model. When the S-wave velocity of the surface layer is higher than some of the layers below, however, the Rayleigh-wave phase velocity in a high-frequency range calculated by existing algorithms approaches the lowest S-wave velocity among the layers above the half-space, rather than a value related to the S-wave velocity of the surface layer. According to our numerical modeling results based on wave equation, trends of the Rayleigh-wave dispersive energy approach about a 91% of the S-wave velocity of the surface layer at a high-frequency range when its wavelength is much shorter than the thickness of the surface layer, which cannot be fitted by a dispersion curve calculated by existing algorithms. We propose a method to calculate Rayleigh-wave phase velocities of models with a high-velocity surface layer by considering its penetration depth. We build a substituted model that only contains the layer with the lowest S-wave velocity among the layers above the half-space and the layers above it. We use the substituted model to replace the original model to calculate phase velocities when the Rayleigh-wave wavelength is not long enough to penetrate the lowest S-wave velocity layer. Several synthetic models are used to verify fitness between the dispersion curve calculated by our proposed method and the trend of the highest dispersive energy. Examples of inversion also demonstrate high accuracy of using our method as the forward calculation method during the inversions.  相似文献   

12.
本文通过数值模拟研究了介质黏弹性对瑞雷波传播的影响.模拟采用结合了交错Adams-Bashforth时间积分法、应力镜像法和多轴完美匹配层的标准交错网格高阶有限差分方案.通过模拟结果和理论结果对比,测试了方法的精度,验证了结果的正确性.在均匀半空间模型中,分别从波场快照、波形曲线及频散能量图三个角度,对黏弹性介质瑞雷波衰减和频散特性进行了详细分析.两层速度递增模型被用于进一步分析瑞雷波在黏弹性层状介质中的特性.结果表明:由于介质的黏弹性,瑞雷波振幅发生衰减,高频成分比低频成分衰减更剧烈,衰减程度随偏移距增大而增强;瑞雷波相速度发生频散,且随频率增大而增大,频散能量的分辨率有所降低;黏弹性波动方程中的参考频率,不会影响瑞雷波振幅衰减和相速度频散的程度,但决定了黏弹性和弹性介质瑞雷波相速度相等的频率位置.本研究有助于人们更好地理解地球介质中瑞雷波的行为,并为瑞雷波勘探的应用和研究提供了科学和有价值的参考.  相似文献   

13.
张素芳 《地球物理学报》2009,52(9):2255-2263
目前人们利用4种基本的地震波现象研究地震各向异性,如横波双折射、面波散射、与传播方向有关的走时异常和PS转换波震相.本文利用面波散射产生的Quasi-Love(QL)波研究青藏高原上地幔顶部的各向异性结构特征.首先利用中国地震台网昌都(CAD)台记录的地震波形资料识别出产生QL波的路径,并利用合成地震记录和垂直偏振极性分析证实所观测到的为QL波,而不是高阶振型的Rayleigh波或其他体波震相;然后由Rayleigh波、Love波和QL波的群速度估算了各向异性结构横向变化的转换点;不同周期时,转换点的位置不同,这种频率依赖性还需要进一步的模拟研究.Love波向Rayleigh波耦合(产生QL波)的转换点位置揭示了青藏高原面波方位各向异性变化特征,并以南北向构造带的东西分段性、上地幔流引起的地球内力诱导岩石形变解释了青藏高原各向异性的东西向差异性.  相似文献   

14.
Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities.  相似文献   

15.
采用与作者2014年发表的“大别-苏鲁及其邻近地区基于背景噪声的勒夫波群速度成像”文章相同的资料,用频时分析提取5 000余条瑞雷波和4 000余条勒夫波相速度频散曲线,反演得到了8—32 s的瑞雷波和勒夫波相速度分布图像.结果显示,瑞雷波与勒夫波相速度分布具有很好的一致性.8 s的相速度分布与地表构造特征相吻合,造山带与隆起区均表现为高速,盆地因其规模不同而显示不同程度的低速.随着周期的增大,大别 苏鲁的高速带由强变弱,但始终存在.16—24 s的高速可能主要受到中地壳高速的控制,而32 s的高速则可能与上地幔顶部的高速有关.比较大别造山带与苏鲁造山带的平均频散曲线,发现大别造山带和苏鲁造山带的勒夫波频散曲线均高于AK135模型计算的理论频散曲线,而瑞雷波则没有这一现象. 这可能意味着两个地区有比较强烈的径向各向异性.   相似文献   

16.
Rayleigh波频散曲线“交叉”及多模式耦合作用研究   总被引:5,自引:3,他引:2       下载免费PDF全文
Rayleigh波可以用来反演近地表结构,在工程物探、石油物探、地球内部结构探测中均有重要意义.数值计算得到的含低速层的层状介质对应的Rayleigh波频散曲线会出现看似“交叉”的现象,但是对于这种现象目前还没有进行系统的研究.事实上可以验证,有些看似交叉的频散曲线实际上不相交.改变低速层的厚度和横波速度发现低速层越明显(即低速层速度越低或层厚越厚)频散曲线越不容易相交.凡友华等在2007年提出频散曲线对应着四种基本模式,在频散曲线发生“交叉”现象的区域实际上存在两个以上模式的频散曲线.本文主要研究了存在R模和S2模的区域内频散曲线的“交叉”现象.首先利用竖直本征振动曲线研究R模和S2模Rayleigh 波的振动特点,发现R模对应的本征振动主要集中在地表,随着深度变化能量快速衰减,S2模对应的本征振动主要集中在第2层.研究“交叉点”附近频散点对应的本征振动曲线发现这一区域有些Rayleigh波同时具有R模和S2模的振动特点,对应着一种耦合模式.通过对实例的研究发现,在“交叉点”附近,若两条频散曲线不发生交叉,则每条曲线对应的模式会发生R模和S2模之间经由耦合模式的转变,本文称这种现象为两种模式发生耦合;若两条频散曲线相交,则同一条频散曲线上的Rayleigh波模式几乎相同,只是在离交点很近的区域会存在一些耦合模式,本文称此时两种模式不发生耦合.本文研究结果主要供Rayleigh波对低速层结构的反演研究参考.  相似文献   

17.
在高频面波方法中,水平分辨率是指水平方向上分辨异常体的能力.异常体在水平方向上的长度可用水平方向上横波速度的异常尺度来确定.面波多道分析(MASW)方法被广泛应用于浅地表横波速度结构的探测,然而该方法确定的横波速度是整个检波器排列的平均计算结果,因此水平分辨率较差.另外,采用共中心点(CMP)多次覆盖的方式采集数据亦增加了野外的工作量.我们在MASW方法的基础上,应用面波层析成像方法,提出一套提高面波勘探水平分辨率的完整方法的技术流程.首先,利用波场分离技术获得准确的基阶或高阶模式面波,采用相位扫描的互相关方法测量多道面波记录中任意两道之间的面波走时;然后根据面波层析成像方法,获得高分辨率的各目标网格内的纯路径相速度频散曲线;最后反演所有目标网格内的纯路径相速度频散曲线,得到研究区域的拟二维横波速度结构.这套方法具有一定的抗噪能力,理论上它可以准确地提取相邻两道之间面波的相速度频散曲线;同时由于该方法最少只需要1个排列就可以获得拟二维横波速度结构,因此它显著减小了野外工作量.理论模型和实际资料都证实了这套方法可有效提高面波勘探的水平分辨率.  相似文献   

18.
For the exploration of near-surface structures, seismic and geoelectric methods are often applied. Usually, these two types of method give, independently of each other, a sufficiently exact model of the geological structure. However, sometimes the inversion of the seismic or geoelectric data fails. These failures can be avoided by combining various methods in one joint inversion which feads to much better parameter estimations of the model than the independent inversions. A suitable seismic method for exploring near-surface structures is the use of dispersive surface waves: the dispersive characteristics of Rayleigh and Love surface waves depend strongly on the structural and petrophysical (seismic velocities) features of the near-surface Underground. Geoelectric exploration of the structure Underground may be carried out with the well-known methods of DC resistivity sounding, such as the Schlumberger, the radial-dipole and the two-electrode arrays. The joint inversion algorithm is tested by means of synthetic data. It is demonstrated that the geoelectric joint inversion of Schlumberger, radial-dipole and two-electrode sounding data yields more reliable results than the single inversion of a single set of these data. The same holds for the seismic joint inversion of Love and Rayleigh group slowness data. The best inversion result is achieved by performing a joint inversion of both geoelectric and surface-wave data. The effect of noise on the accuracy of the solution for both Gaussian and non-Gaussian (sparsely distributed large) errors is analysed. After a comparison between least-square (LSQ) and least absolute deviation (LAD) inversion results, the LAD joint inversion is found to be an accurate and robust method.  相似文献   

19.
Surface wave dispersion is studied to obtain the 1-D average velocity structure of the crust in the Korean Peninsula by inverting group- and phase-velocities jointly. Group velocities of short-period Rayleigh and Love waves are obtained from cross-correlations of seismic noise. Multiple-filter analysis is used to extract the group velocities at periods between 0.5 and 20 s. Phase velocities of Rayleigh waves in 10- and 50-s periods are obtained by applying the two-station method to teleseismic data. Dispersion curves of all group and phase velocities are jointly inverted for the 1-D average model of the Korean Peninsula. The resultant model from surface wave analysis can be used as an initial model for numerical modeling of observations of North Korean events for a velocity model appropriated to the Korean Peninsula. The iterative process is focused especially on the surface sedimentary layer in the numerical modeling. The final model, modified by numerical modeling from the initial model, indicates that the crust shear wave velocity increases with depth from 2.16 km/s for a 2-km-thick surface sedimentary layer to 3.79 km/s at a Moho depth of 33 km, and the upper mantle has a velocity of 4.70 km/s.  相似文献   

20.
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号