首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
The 10-km diameter Mule Creek caldera is the youngest felsic eruptive center in the Mogollon-Datil volcanic field of southwestern New Mexico. The caldera forms a topographic basin surrounded by a raised rim. The caldera wall is well displayed on the south and west sides of the structure where it dips 20–30 degrees toward the center of the basin. Mudflow breccia fills the caldera and is banked up against the caldera wall. Post-caldera porphyritic quartz latite domes and flows crop out along the ring-fracture zone. The caldera is superimposed upon an older volcanic complex of flow-banded rhyolite and porphyritic andesite lava. The Mule Creek caldera probably originated by explosive eruption of about 10 km3 of pumice and ash, in part preserved in the matrix of the mudflow breccia. Periods of explosive volcanism during the deposition of mudflow breccia are documented by tuffaceous beds interbedded with the breccia. A thin rhyolite ash-flow sheet originated in the caldera and overlies the mudflow breccia. The youngest felsic rocks around the caldera are (1) domes and flows of crystal-rich porphyritic quartz latite of variable mineralogy, interpreted as a defluidized magma, and (2) widespread crystal-poor, flow-banded rhyolite, dated at 18.6 m.y., which is not directly related to the caldera sequence. The Mule Creek caldera and other volcanic features farther south represent the only documented overlap of felsic volcanism with early stages of Basin-Range tectonism in the Mogollon-Datil field.  相似文献   

17.
The enthalphy of the heat carrying fluids liquid water or mixture of water plus steam) which feeds the biggest Kamchatka geyser, Velican is obtained from the critical quantity of heat Qcritical, which is the net heat lost during the previous eruption and must be resupplied (stored) to trigger the next eruption. There are two unknowns in the heat balance equation for the geyser that cannot be determined from observations on the geyser in its natural state: critical and the enthalpy of the heat-carrying fluids Io. In order to obtain a system of two equations for unambiguous determination of these parameters, we made temporary physical changes that affected the natural interval between geyser eruptions and constructed the heat balance equations for the different regimes (i.e., natural and induced intervals).The changes in interval of Velican geyser were achieved by changing the area of its surface pool, using dams. For geysers with large surface pool areas, the heat loss from the surface (mainly through evaporation) is of the same order and sometimes larger than the losses from discharge of hot water. The change of surface pool area for Velican geyser from 12 m2 (in natural state) to 4.5 and 36.7 m2 in experiments leads to changes of its interval from an average of 5 hours and 35 minutes in natural state to 4 hours and 59 minutes and 8 hours and 8 minutes, respectively. From the three independent equations of heat balance we obtained three sets cf values for the enthalpy, Io and the critical energy, Qcritical, which differ from each other by less than 1%: Io= 176 kcal/kg*, Qcritical = 3.78 × 106 kcal.The interval between eruptions of Velican geyser tends to change linearly with vent area (within our experimental range). The range or interval values (the difference between maximal and minimal periods) also depends linearly on vent area. These two systematics are due to the facts that the increase of vent surface area causes increased heat loss by evaporation, and that changes of external conditions (wind velocity, atmospheric pressure, and air temperature) greatly influence the geyser interval.In order to simplify comparison of intervals of eruption of different geysers or of the  相似文献   

18.
19.
Imbrication, indicating flow and source direction, occurs in three Pleistocene or upper Pliocene pumice-flow tuffs exposed in a 700-km2 area on the east flank of the Cascade Range near Bend, Oregon, and shows the location of previously unknown source vents of these tuffs. The imbrication is formed by inclined elongate and/or flat pumice or lithic fragments and locally by elongate plagioclase crystals. Imbrication is best developed within the lower zones of individual flow units; the pumiceous top zones also locally show imbrication directions parallel to that in the lower zones. Moreover, the areal pattern of size distribution of lithic and pumice fragments in the flows is concordant with the flow direction pattern indicated by imbrication.The upper pumice flow shows a fan-shaped pattern of flow directions indicated by imbrication which points to a western source. A possible vent, about 20 km west of Bend in the highland near Broken Top Volcano, is marked by many silicic domes and basaltic cinder cones where there is a 6–8 mgal negative Bouguer gravity anomaly. In contrast, imbrication in the middle and lower pumice flows indicates flow from a source southwest of Bend. Vents in this direction are not obvious. Possible buried vents are located about 30 km and 45 km southwest of Bend near Sitkum Butte and Lookout Mountain, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号