首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes certain procedures for deriving from the apparent resistivity data as measured by the Wenner electrode configuration two functions, known as the kernel and the associated kernel respectively, both of which are functions dependent on the layer resistivities and thicknesses. It is shown that the solution of the integral equation for the Wenner electrode configuration leads directly to the associated kernel, from which an integral expression expressing the kernel explicitly in terms of the apparent resistivity function can be derived. The kernel is related to the associated kernel by a simple functional equation where K1(λ) is the kernel and B1(λ) the associated kernel. Composite numerical quadrature formulas and also integration formulas based on partial approximation of the integrand by a parabolic arc within a small interval are developed for the calculation of the kernel and the associated kernel from apparent resistivity data. Both techniques of integration require knowledge of the values of the apparent resistivity function at points lying between the input data points. It is shown that such unknown values of the apparent resistivity function can satisfactorily be obtained by interpolation using the least-squares method. The least-squares method involves the approximation of the observed set of apparent resistivity data by orthogonal polynomials generated by Forsythe's method (Forsythe 1956). Values of the kernel and of the associated kernel obtained by numerical integration compare favourably with the corresponding theoretical values of these functions.  相似文献   

2.
New Methods for Modeling Laterolog Resistivity Corrections   总被引:1,自引:1,他引:0  
The paper presents methods for laterolog response modeling. In Coulomb’s charges method, Laplace’s equation is solved for the electric field distribution in rock medium with internal boundaries between different resistivity layers. There, the boundary problem is reduced to Fred-holm integral equation of the second kind. The second method uses a finite element array to model apparent resistivity from laterolog. The task is treated as DC problem and the Laplace equation is solved numerically. The presented methods were applied to borehole data covering a typical stratigraphie section of the Fore-Sudetic Monocline in southwestern Poland. Apparent resistivity was calculated using the Coulomb’s charges method and alternatively modeled using a finite element method which gave similar results. Then, a series of linear corrections for borehole, shoulder bed, and filtration effects for apparent resistivity obtained by the Coulomb’s charges method demonstrated the feasibility of calculating true resistivity of virgin and invaded zones. The proposed methods provide a flexible solution in modeling which can be adapted to other logs.  相似文献   

3.
An integral equation method is described for solving the potential problem of a stationary electric current in a medium that is linear, isotropic and piecewise homogeneous in terms of electrical conductivity. The integral equations are Fredholm's equations of the ‘second kind’ developed for the potential of the electric field. In this method the discontinuity-surfaces of electrical conductivity are divided into ‘sub-areas’ that are so small that the value of their potential can be regarded as constant. The equations are applied to 3-D galvanic modeling. In the numerical examples the convergence is examined. The results are also compared with solutions derived with other integral equations. Examples are given of anomalies of apparent resistivity and mise-a-la-masse methods, assuming finite conductivity contrast. We show that the numerical solutions converge more rapidly than compared to solutions published earlier for the electric field. This results from the fact that the potential (as a function of the location coordinate) behaves more regularly than the electric field. The equations are applicable to all cases where conductivity contrast is finite.  相似文献   

4.
The boundary-element method is used to model the 2D terrain effect on the magnetotelluric (MT) field. Firstly, the boundary-value problem of a 2D magnetotelluric field is transformed into an integral equation problem by using Green's theorem. Then the boundary-element method is used to solve the integral equation and to obtain the MT field and its normal derivative on the terrain. From these values, the apparent resistivity can be calculated. Compared with the finite-element method, the boundary-element method is simpler in element division and the initial data preparation. The configuration of a terrain divided by the boundary-element method is more consistent with the practical terrain. The method proposed in this paper can be run on a microcomputer, so that it can be used in the field.  相似文献   

5.
Among resistivity methods, models containing two dipping discontinuity surfaces with a conductive medium between them have been considered in this study. The theoretical apparent resistivity curves obtained for such models were calculated using Alfano's integral equation for various dip angles of planes at different array distances from the contacts. The results obtained showed that it is possible to achieve the dip values of the discontinuities under particular conditions, but ambiguities cannot be ruled out.  相似文献   

6.
The electrical potential generated by a point source of current on the ground surface is studied for a multi-layered earth formed by layers alternatively characterized by a constant conductivity value and by conductivity varying linearly with depth. The problem is accounted for by solving a Laplace's differential equation for the uniform layers and a Poisson's differential equation for the transitional layers. Then, by a simple algorithm and by the introduction of a suitable kernel function, the general expression of the apparent resistivity for a Schlumberger array placed on the surface is obtained. Moreover some details are given for the solution of particular cases as 1) the presence of a infinitely resistive basement, 2) the absence of any one or more uniform layers, and 3) the absence of any one or more transitional layers. The new theory proves to be rather general, as it includes that for uniform layers with sharp boundaries as a particular case. Some mathematical properties of the kernel function are studied in view of the application of a direct system of quantitative interpretation. Two steps are considered for the solution of the direct problem: (i) The determination of the kernel function from the field measurements of the apparent resistivity. Owing to the identical mathematical formalism of the old with this new resistivity theory, the procedures there developed for the execution of the first step are here as well applicable without any change. Thus, some graphical and numerical procedures, already published, are recalled. (ii) The determination of the layer distribution from the kernel function. A recurrent procedure is proposed and studied in detail. This recurrent procedure follows the principle of the reduction to a lower boundary plane, as originally suggested by Koefoed for the old geoelectrical theory. Here the method differs mainly for the presence of reduction coefficients, which must be calculated each time when passing to a reduced earth section.  相似文献   

7.
We start from the Hankel transform of Stefanescu's integral written in the convolutionintegral form suggested by Ghosh (1971). In this way it is possible to obtain the kernel function by the linear electric filter theory. Ghosh worked out the sets of filter coefficients in frequency domain and showed the very low content of high frequencies of apparent resistivity curves. Vertical soundings in the field measure a series of apparent resistivity values at a constant increment Δx of the logarithm of electrode spacing. Without loss of information we obtain the filter coefficient series by digital convolution of the Bessel function of exponential argument with sine function of the appropriate argument. With a series of forty-one values we obtain the kernel functions from the resistivity curves to an accuracy of better than 0.5%. With the digital method it is possible to calculate easily the filter coefficients for any electrode arrangement and any cut-off frequency.  相似文献   

8.
In a previous paper it has been shown that we can relate the transient IP electric field Ep , existing in a rock after a step wave of polarizing current, with the steady-state current density Jss during the current step wave as follows: Ep =ρ' Jss . This relation may be interpreted as a generalized Ohm's law, valid in linear cases, in which ρ’(fictitious resistivity) is defined as the product of the true resistivity ρ with the chargeability m. Supposing E p=— grad Up and applying the divergence condition div Jss = o, one can, for a layered earth, obtain a general expression for the depolarization potential Up as a solution of Laplace's equation ?2Up= o. Since the mathematical procedure for the solution of this last equation is identical to that used in resistivity problems, we propose now the introduction of an apparent fictitious resistivity ρ'a (defined as the product of the apparent resistivity ρa with the apparent chargeability ma) as a new parameter for the interpretations of IP soundings carried out over layered structures with a common electrode array. The most general expression of ρ'a as a function of the electrode distance turns out to be mathematically identical to the general expression of ρ'a. Therefore it is possible to interpret a ρ'a field curve using the same standard graphs for resistivity prospecting with the usual method of complete curve matching. In this manner a great deal of work is saved since there is no need to construct proper ma graphs for the interpretation of IP soundings, as it has been done up to now. Finally some field examples are reported.  相似文献   

9.
An iterative refinement method for determining a layered resistivity model from a Schlumberger or Wenner sounding curve is adapted to determine a layered resistivity model by using apparent resistivity and phase derived from the magnetotelluric impedance. Magnetotelluric observations presented as a function of period are first converted to an approximate resistivity–depth profile using Schmucker's transformation and this is used to construct an initial guess (starting) model. A two-stage procedure is then invoked. Keeping resistivities constant, layer boundaries are first adjusted to give a minimum misfit between measured data and responses and this is followed by resistivity adjustments with fixed layer boundaries to reduce the misfit further. The method is illustrated by application to some synthetic data both exact and with added noise, to a real field data set and to some magnetotelluric profile data obtained in a survey over the Carnmenellis granites in south Cornwall. The method is validated by recovering conductivity models from the exact and noisy 1D synthetic data. For complicated three-dimensional data at a single site and along a profile of stations, the method is shown to produce acceptable solutions which may be used as starting models in further two- or three-dimensional studies.  相似文献   

10.
A simple unified equation of apparent resistivity for a general four-electrode array is developed. The main idea is the analytical integration of the Stefanescu expression for potential over a layered earth by writing an exponential approximation for the kernel function. Finally a matrix equation is developed to estimate the kernel function from observed apparent resistivity values. The general equation automatically reduces to the particular configuration once the electrode separations are modified suitably. Examples for Schlumberger and Wenner configurations are numerically calculated to estimate the precision of the method. Good results in a short execution time are obtained, irrespective of the shape of the apparent resistivity curve. Finally, the full interpretation of one theoretical resistivity curve and two field resistivity curves is demonstrated. The more stable ridge-regression estimation method is used in the identification of layer parameters from the kernel function.  相似文献   

11.
A numerical method is presented for direct interpretation of resistivity sounding measurements. The early part of the resistivity transform curve derived from field observations by standard methods is approximated by a two-layer curve. The resistivity of the first layer is determined from the arithmetic mean of the successive computations which are carried on each of three successive discrete values of the resistivity transform curve. Using this mean value of the resistivity, the thickness of the first layer is computed from the sample values in pairs of the resistivity transform curve. After these determinations, the top layer is removed by Pekeris's reduction equation. The parameters of the second layer are obtained from the discrete values of the reduced transform curve (which corresponds to the second part of the resistivity transform curve) by the same procedure as described for the first layer. The same computational scheme is repeated until the parameters of all intermediate layers are obtained. The resistivity of the substratum is determined from the reduction equation.  相似文献   

12.
A three‐dimensional (3D) electrical resistivity modelling code is developed to interpret surface and subsurface data. Based on the integral equation, it calculates the charge density caused by conductivity gradients at each interface of the mesh, allowing the estimation of the potential everywhere without the need to interpolate between nodes. Modelling generates a huge matrix, made up of Green's functions, which is stored by using the method of pyramidal compression. The potential is compared with the analytical and the numerical solutions obtained by finite‐difference codes for two models: the two‐layer case and the vertical contact case. The integral method is more accurate around the source point and at the limits of the domain for the potential calculation using a pole‐pole array. A technique is proposed to calculate the sensitivity (Jacobian) and Hessian matrices in 3D. The sensitivity is based on the derivative with respect to the block conductivity of the potential computed using the integral equation; it is only necessary to compute the electrical field at the source location. A direct extension of this technique allows the determination of the second derivatives. The technique is compared with the analytical solutions and with the calculation of the sensitivity according to the method using the inner product of the current densities calculated at the source and receiver points. Results are very accurate when the Green's function that includes the source image is used. The calculation of the three components of the electric field on the interfaces of the mesh is carried out simultaneously and quickly, using matrix compression.  相似文献   

13.
This paper describes the procedure for interpreting the apparent resistivity data measured with the two-electrode array directly with the help of kernel function. The calculation of kernel function from the observed resistivity curve is done by the method of decomposition. In the method of decomposition the resistivity curve is approximated by a sum of certain functions, whose choice is only restricted by the requirement that the contribution to the kernel function corresponding to them should be easily computable. A few such functions are classified. These, and the standard curves for corresponding kernel functions obtained by utilising an integral expression for two-electrode array expressing the kernel explicitly in terms of the apparent resistivity functions, are plotted on log-log scale. The determination of layer parameters, that is, the layer resistivities and thicknesses from the kernel function can be carried out by a method proposed by Pekeris (1940).  相似文献   

14.
为适应地电阻率法预报地震深入研究的需要,本文介绍了几种高精度计算水平层状介质视电阻率的公式及方法。对于MN→0的视电阻率计算,本文给出了J_1(x)滤波系数法的计算步骤,此外对二层、三层介质的传统级数求和法,给出了估算精度的公式;对于MN≠O的视电阻率计算,本文讨论了数值积分法和J_0(x)滤波系数法的计算步骤以及为提高精度所采取的技术措施,并且给出了一批用两种方法所得到的计算结果。  相似文献   

15.
一种适于电阻率成像的正演新方法   总被引:6,自引:0,他引:6       下载免费PDF全文
利用格林函数导出了2.5维问题中研究区域网格化条件下空间任意一点电位所满足的边界积分方程,基于该方程可以灵活地建立电阻率层析成像方法.用边界单元法求解该方程可得到地表和地下的电位分布,从而可以进行视电阻率模拟.所得计算结果与前人的实验结果及用其它方法获得的数值模拟结果的对比说明这一方法的正确性  相似文献   

16.
In this paper a theorem is demonstrated which allows—after the introduction of a suitable dipole kernel function or dipole resistivity transform function—to write the apparent resistivity function as an Hankel transformable integral expression. As a practical application of the theorem a procedure of quantitative interpretation of dipole soundings is suggested in which the dipole resistivity transform function obtained after inversion of the original dipole apparent resistivity data is used to control the goodness of the set of layering parameters which have been derived with our previous method of transformation of dipole sounding curves into equivalent Schlumberger diagrams.  相似文献   

17.
Following up our recent study of an indirect procedure for the practical determination of the maximum frequency-effect, defined as fe = 1 ? pρdc with ρ the resistivity at infinite frequency, we show at first how, through the Laplace transform theory, ρ can be related to stationary field vectors in the simple form of Ohm's law. Then applying the equation of continuity for stationary currents with a suitable set of boundary conditions, we derive the integral expression of the apparent resistivity at infinite frequency ρ,a in the case of a horizontally layered earth. Finally, from the definition of the maximum apparent frequency-effect, analytical expressions of feα are obtained for both Schlumberger and dipole arrays placed on the surface of the multi-layered earth section in the most general situation of vertical changes in induced polarization together with dc resistivity variations not at the same interfaces. Direct interpretation procedures are suggested for obtaining the layering parameters directly from the analysis of the sounding curves.  相似文献   

18.
When an electric current is introduced to the earth, it sets up a distribution of charges both on and beneath the earth's surface. These charges give rise to the anomalous potential measured in the d. c. resistivity experiment. We investigate different aspects of charge accumulation and its fundamental role in d. c. experiments. The basic equations and boundary conditions for the d. c. problem are first presented with emphasis on the terms involving accumulated charges which occur wherever there is a non-zero component of electric field parallel to the gradient of conductivity. In the case of a polarizable medium, the polarization charges are also present due to the applied electric field, yet they do not change the final field distribution. We investigate the precise role of the permittivity of the medium. The charge buildup alters the electric fields and causes the refraction of current lines; this results in the well-known phenomenon of current channelling. We demonstrate this by using charge density to derive the refraction formula at a boundary. An integral equation for charge density is presented for whole-space models where the upper half-space is treated as an in-homogeneity with zero conductivity. The integral equation provides a tool with which the charge accumulation can be examined quantitatively and employed in the practical forward modelling. With the aid of this equation, we investigate the effect of accumulated charges on the earth's surface and show the equivalence between the half-space and whole-space formulations of the problem. Two analytic examples are presented to illustrate the charge accumulation and its role in the d. c. problem. We investigate the relationship between the solution for the potential via the image method and via the charge density. We show that the essence of the image method solution to the potential problem is to derive a set of fictitious sources which produce the same potential as does the true charge distribution. It follows that the image method is viable only when the conductivity structure is such that the effect of the accumulated charge can be represented by a set of point images. As numerical examples, we evaluate quantitatively the charge density on the earth's surface that arises because of topography and the charge density on a buried conductive prism. By these means, we demonstrate the use of the boundary element technique and charge density in d. c. forward modelling problems.  相似文献   

19.
In a previous paper by the present author a method was developed for direct interpretation of resistivity observations made with a Schlumberger electrode configuration. This method consisted of two steps. The first of these was to derive the kernel function in the integral expression for the apparent resistivity from the observed data; the second step was to derive the resistivity stratification from this kernel function. The first of these two steps depends on the electrode configuration that has been used. In the present paper the above mentioned method is modified so as to make it apply to a Wenner electrode configuration. The procedure is indicated by which the method may be adapted to any other electrode configuration in which the distances between the electrodes are finite. The second step in the interpretation, i.e. the derivation of the resistivity stratification from the kernel function, is independent of the electrode configuration used, and therefore needs no further discussion in the present context.  相似文献   

20.
This paper deals with the apparent resistivity as observed on the surface due to a dyke of arbitrary shape. In order to give a closed analytical solution it has been necessary to assume that the dyke is either perfectly conductive or resistive relative to the enclosing medium. Furthermore we have considered an infinite line source instead of a conventional point current source; however a simple integral transform is given to transform the point-source-data into the line-source-data. So the present study is equally useful where line sources are inconvenient to handle. Besides considering the conventional method of electrical surveying (bipole method) where the source and sink are separated by a finite distance, we have considered a new variation (unipole method) where the source and sink are separated by an infinite distance, and the source is split into two separate sources each of half strength. A series of apparent resistivity curves for both methods are presented for different parameters of the dyke. The usefulness of these curves lies mainly in the fact that they may provide the necessary guide-lines for semi-quantitative interpretation of the observed data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号