首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a comprehensive study of the Forbush effects and their relation to solar and geomagnetic activity, a database of transient phenomena in cosmic rays and the interplanetary medium has been created, which is continuously updated with data on new events. Based on these data, we study the dependence of the Forbush effects on various internal and external parameters, as well as select different groups of events. In this paper, we consider recurrent (caused by high-speed solar wind streams from coronal holes) and sporadic (associated with coronal mass ejections) events. We investigate groups of events with a sudden and gradual onset. We show that the resulting dependencies of the Forbush effects (on the parameters of interplanetary disturbances, geomagnetic activity indices, etc.) are substantially different for the above-mentioned groups. Most likely, these differences are caused by different sources of solar wind disturbances.  相似文献   

2.
An analysis of IZNIRAN magnetic observatory data indicated that geomagnetic storms with sudden and gradual commencements form two independent populations with respect to the disturbance occurrence time and character because the solar sources of these disturbances are different. Storms with sudden and gradual commencements are caused by coronal mass ejections and high-speed solar wind streams from coronal holes, respectively.  相似文献   

3.
The IZMIRAN database of Forbush effects and interplanetary disturbances has been used to study long-term changes in the number and magnitude of Forbush effects in the last six solar cycles (1957–2016) for cosmic rays of rigidity of 10 GV. Solar activity cycles have been shown to be well expressed in data of Forbush effects, especially in large magnitude events that almost disappear in minima. The changes in the distribution of Forbush effects and the decrease in their average values from solar activity maximum to minimum are explained by the predominance of cosmic-ray variations due to the action of coronal holes at low activity. It should be noted that the current cycle involves fewer and generally weaker Forbush effects than in the previous five cycles. For each month, an FD index combining the magnitude and number of Forbush effects and convenient for studying long-term variations has been proposed and calculated.  相似文献   

4.
Geomagnetism and Aeronomy - Forbush decreases of cosmic rays are caused by two types of solar sources: coronal holes and coronal mass ejections. In some cases, the identification of the solar...  相似文献   

5.
Geomagnetism and Aeronomy - Forbush decreases occurring from 1997 to 2017 (1055 events in total) have been analyzed with the use of a database of Forbush effects and interplanetary disturbances...  相似文献   

6.
Coronal mass ejections (CMEs) not only produce Forbush effects but contribute to long-term modulations of cosmic rays. That makes coronal ejections the main sporadic manifestations of the solar activity, which should be considered in modulation models. In this paper, a new version of the CME-index is proposed based on a comparison of the data from satellite coronographs with Forbush effects and long-term variations of cosmic rays.  相似文献   

7.
The regularities of the variations in the IMF B z component have been studied based on the data on the solar wind streams and their solar sources. Isolated solar wind streams such as magnetic clouds and shock layers before them, undisturbed heliospheric current sheets (HCSs), leading edges and bodies of high-speed streams from coronal holes (HSSs from CHs) have been considered. It has been revealed that each type of isolated streams in the interplanetary medium has it own features in the variations in the value and direction of the B z component related to the stream immanent properties and conditions of propagation in the interplanetary plasma. The appearance of the southward B z component is obligatory for all these streams which are, therefore, geoeffective.  相似文献   

8.
Geomagnetism and Aeronomy - The Forbush decreases for the period from 1997 to 2020 were studied based on data from the database on Forbush effects and interplanetary disturbances created and...  相似文献   

9.
Solar disturbances are observed to have significant effects in near-Earth space. Over the past half-century of observation, a relatively clear picture has developed of how and why the typical solar wind — as well as the most extreme solar events — drive geospace responses. It is clear that magnetospheric substorms, geomagnetic storms (both recurrent and aperiodic events), and even certain atmospheric chemical changes have their origins in the solar–terrestrial coupling arena. High-speed solar wind streams and fast coronal mass ejections (CMEs) can often have strong interplanetary shock waves and southward magnetic fields which can initiate strong storm responses. We demonstrate in this review that available modern space-observing platforms and ground facilities allow us to trace drivers from the Sun to the Earth's atmosphere. This allows us to assess quantitatively the energy transport that occurs throughout the Sun–Earth system during both typical and extreme conditions. Hence, we are continuously improving our understanding of “space weather” and its effects on human society.  相似文献   

10.
From 1957 up to the present time, the Lebedev Physical Institute (LPI) has performed regular monitoring of ionizing radiation in the Earth’s atmosphere. There are cases when the X-ray radiation generated by energetic magnetospheric electrons penetrates the atmosphere and is observed at polar latitudes. The vast majority of these events occurs against the background of high-velocity solar wind streams, while magnetospheric perturbations related to interplanetary coronal mass ejections (ICMEs) are noneffective for precipitation. It is shown in the paper that ICMEs do not cause acceleration of a sufficient amount of electrons in the magnetosphere. Favorable conditions for acceleration and subsequent scattering of electrons into the loss cone are created by magnetic storms with an extended recovery phase and with sufficiently frequent periods of negative Bz component of the interplanetary magnetic field (IMF). Such geomagnetic perturbations are typical for storms associated with high-velocity solar wind streams.  相似文献   

11.
地磁暴的行星际源研究是了解及预报地磁暴的关键因素之一.本文研究了2007-2012年间的所有Dstmin ≤-50 nT的中等以上地磁暴,建立了这些地磁暴及其行星际源的列表.在这6年中,共发生了51次Dstmin≤-50 nT的中等以上地磁暴,其中9次为Dstmin≤-100 nT的强地磁暴事件.对比上一活动周相同时间段发现,在这段太阳活动极低的时间,地磁暴的数目显著减少.对这些地磁暴行星际源的分析表明,65%的中等以上地磁暴由与日冕物质抛射相关的行星际结构引起,31%的地磁暴由共转相互作用区引起,这与以前的结果一致.特别的,在这个太阳活动极低时期内,共转相互作用区没有引起Dstmin≤-100 nT的强地磁暴,同时,日冕物质抛射相关结构也没有引起Dstmin≤-200 nT的超强地磁暴.以上结果表明极低太阳活动同时导致了共转相互作用区和日冕物质抛射地磁效应的减弱.进一步,分析不同太阳活动期间地磁暴的行星际源发现:在太阳活动低年(2007-2009年),共转相互作用区是引起地磁暴的主要原因; 而在太阳活动上升期和高年(2010-2013年),大部分(75%,30/40)的中等以上地磁暴均由日冕物质抛射相关结构引起.  相似文献   

12.
Variations in the cosmic ray intensity (specifically, Forbush effects) and in the geomagnetic cutoff rigidity planetary system during powerful geomagnetic disturbances in cycle 23 were studied based on worldwide station network data by the global spectrographic survey method. The cosmic ray variation spectra during these periods and the spectral indices of these variations when the spectrum was approximated by the power function of the particle rigidity varying from 10 to 50 GV during different Forbush effect development phases are presented. It was indicated that the spectral indices of cosmic ray variations during spectrum approximation by the power function of the particle rigidity are larger during the maximal modulation phase than during the cosmic ray intensity decline and recovery phases. The fact that the amplitude of the second harmonic of the cosmic ray pitch angle anisotropy did not increase on November 20, 2003, confirms that the Earth fell into a Sun-independent spheromark magnetic cloud. The increased amplitudes of the second harmonic of the cosmic ray pitch angle anisotropy during other Forbush effects in July 2000, March–April 2001, October 2003, and November 2004 indicate that the Earth was in the coronal mass ejection region, in which the interplanetary magnetic field structure was loop-like during these periods.  相似文献   

13.
The heliospheric current sheet (HCS) is modified by the solar activity. HCS is highly inclined during solar maximum and almost confined with the solar equatorial plane during solar minimum. Close to the HCS solar wind parameters as proton temperature, flow speed, proton density, etc. differ compared to the region far from the HCS. The Earth’s magnetic dipole field crosses HCS several times each month. Considering interplanetary coronal mass ejections (ICME) and high speed solar wind streams (HSS) free periods an investigation of the HCS influence on the geomagnetic field disturbances is presented. The results show a drop of the Dst index and a rise of the AE index at the time of the HCS crossings and also that the behavior of these indices does not depend on the magnetic polarity.  相似文献   

14.
Solar coronal mass ejections (CMEs) are a striking manifestation of solar activity seen in the solar corona, which bring out coronal plasma as well as magnetic flux into the interplanetary space and may cause strong interplanetary disturbances and geomagnetic storms. Understanding the initiation of CMEs and forecasting them are an important topic in both solar physics and geophysics. In this paper, we review recent progresses in research on the initiation of CMEs. Several initiation mechanisms and models are discussed. No single model/simulation is able to explain all the observations available to date, even for a single event.  相似文献   

15.
冕洞是太阳风高速流的源区.当冕洞出现在中低纬区域时,太阳风高速流会扫过地球并引发地球空间环境扰动,如地磁暴和高能电子暴等.在太阳活动周下降年和低年,这种类型的扰动占据主导地位.因此,冕洞高速流的到达时间、峰值时间、峰值强度和持续时间等,是空间天气预报的重要内容.本文基于2010年5月到2016年12月的SDO/AIA太阳极紫外图像以及1AU处ACE和WIND卫星的太阳风观测数据,确定了160个冕洞-太阳风高速流事件,定量计算了他们的特征参数,包括冕洞与太阳风高速流的开始时间、峰值时间、峰值强度和结束时间,分析了各个特征参数的分布规律,对冕洞-高速流之间的关系进行了统计研究,并提出了一种新的预报方法,为基于冕洞成像观测的太阳风高速流的精准预报提供了依据.  相似文献   

16.
During solar flares and coronal mass ejections, nuclei and electrons accelerated to high energies are injected into interplanetary space. These accelerated particles can be detected at the SOHO satellite by the ERNE instrument. From the data produced by the instrument, it is possible to identify the particles and to calculate their energy and direction of propagation. Depending on variable coronal/interplanetary conditions, different kinds of effects on the energetic particle transport can be predicted. The problems of interest include, for example, the effects of particle properties (mass, charge, energy, and propagation direction) on the particle transport, the particle energy changes in the transport process, and the effects the energetic particles have on the solar-wind plasma. The evolution of the distribution function of the energetic particles can be measured with ERNE to a better accuracy than ever before. This gives us the opportunity to contribute significantly to the modeling of interplanetary transport and acceleration. Once the acceleration/transport bias has been removed, the acceleration-site abundance of elements and their isotopes can be studied in detail and compared with spectroscopic observations.  相似文献   

17.
Discovery of the Van Allen radiation belts by instrumentation flown on Explorer 1 in 1958 was the first major discovery of the Space Age. A view of the belts as distinct inner and outer zones of energetic particles with different sources was modified by observations made during the Cycle 22 maximum in solar activity in 1989–1991, the first approaching the activity level of the International Geophysical Year of 1957–1958. The dynamic variability of outer zone electrons was measured by the NASA–Air Force Combined Radiation Release and Effects Satellite launched in July 1990. This variability is caused by distinct types of heliospheric structure which vary with the solar cycle. The largest fluxes averaged over a solar rotation occur during the declining phase from solar maximum, when high-speed streams and co-rotating interaction regions (CIRs) dominate the inner heliosphere, leading to recurrent storms. Intense episodic events driven by high-speed interplanetary shocks launched by coronal mass ejections (CMEs) prevail around solar maximum when CMEs occur most frequently. Only about half of moderate storms, defined by intensity of the ring current, lead to an overall flux increase, emphasizing the need to quantify loss as well as source processes; both increase when the magnetosphere is strongly driven. Three distinct types of acceleration are described in this review: prompt and diffusive radial transport, which increases energy while conserving the first invariant, and local acceleration by waves, which change the first invariant. The latter also produce pitch angle diffusion and loss, as does outward radial transport, especially when the magnetosphere is compressed. The effect of a dynamic magnetosphere boundary on radiation belt electrons is described in the context of MHD-test particle simulations driven by measured solar wind input.  相似文献   

18.
Coronal mass ejections (CMEs) and high-speed solar wind streams (HSS) are two solar phenomena that produce large-scale structures in the interplanetary (IP) medium. CMEs evolve into interplanetary CMEs (ICMEs) and the HSS result in corotating interaction regions (CIRs) when they interact with preceding slow solar wind. This paper summarizes the properties of these structures and describes their geoeffectiveness. The primary focus is on the intense storms of solar cycle 23 because this is the first solar cycle during which simultaneous, extensive, and uniform data on solar, IP, and geospace phenomena exist. After presenting illustrative examples of coronal holes and CMEs, I discuss the internal structure of ICMEs, in particular the magnetic clouds (MCs). I then discuss how the magnetic field and speed correlate in the sheath and cloud portions of ICMEs. CME speed measured near the Sun also has significant correlations with the speed and magnetic field strengths measured at 1 AU. The dependence of storm intensity on MC, sheath, and CME properties is discussed pointing to the close connection between solar and IP phenomena. I compare the delay time between MC arrival at 1 AU and the peak time of storms for the cloud and sheath portions and show that the internal structure of MCs leads to the variations in the observed delay times. Finally, we examine the variation of solar-source latitudes of IP structures as a function of the solar cycle and find that they have to be very close to the disk center.  相似文献   

19.
Geomagnetic disturbances in the Canadian region are compared with their solar and heliospheric sources during the decline phase of solar activity, when recurrent solar wind streams from low-latitude coronal holes were clearly defined. A linear correlation analysis has been performed using the following data: the daily and hourly indices of geomagnetic activity, solar wind velocity, and coronal hole area. The obtained correlation coefficients were rather low between the coronal hole areas and geomagnetic activity (0.17–0.48), intermediate between the coronal hole areas and the solar wind velocity (0.40–0.65), and rather high between the solar wind velocity and geomagnetic activity (0.50–0.70). It has been indicated that the correlation coefficient values can be considerably increased (by tens of percent in the first case and about twice in the second case) if variations in the studied parameters related to changes in the ionosphere (different illumination during a year) and variations in the heliolatitudinal shift of the coordinate system between the Earth, the Sun, and a spacecraft are more accurately taken into account.  相似文献   

20.
The initial parameters of disturbing fluxes of coronal mass ejections (CMEs) such as loop, front, spike, multiple structure ejection, and structureless ejection, which cannot be determined from direct observations, are determined using the data on the interplanetary coronal mass ejections (ICMEs) registered on the Helios and Pioneer Venus Orbiter spacecraft in the vicinity of Venus. The method of MHD modeling the modified initial parameters of CMEs has been used for this purpose. The ICME parameters have been analyzed in order to determine the types of the solar sources of the considered plasma flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号