首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Fine sediment in suspended form, recently deposited overbank and in temporary storage on or in channel beds, was collected in the Nene basin during a period of drought through to a period of four high flows. The sediment was analysed for arsenic, copper, lead, phosphorus and zinc concentrations with the aim of investigating their sources, movement, temporary storage and potential for environmental harm. Copper, lead and zinc probably originated from urban street dusts, phosphorus (originally in dissolved form) from sewage effluent and arsenic from natural soils developed over ironstone. There was little difference in the metal or arsenic concentrations in the sediment under different flow conditions; instead, proximity to pollutant sources appeared to control their concentrations. Phosphorus in tributary sub‐catchments probably adsorbed to sediment during periods of low flow but these sediments were flushed away during high flows and replaced by sediment with lower concentrations. However, concentrations of all pollutants in overbank sediments along the Nene's main channel were not reduced in successive flood events, suggesting no first flush effect. Only phosphorus accumulated on sediment at concentrations exceeding those of its catchment‐based sources (e.g. street dusts, channel banks and catchment soils). This scavenging of aqueous phosphate by sediment explained the difference in behaviour between phosphorus, arsenic and heavy metals. The surface area and organic matter content were shown to have a small effect on contaminant concentrations. Street dust contaminants only exceeded predicted effect levels in close proximity to urban areas, suggesting a small potential for harm to the aquatic environment. Arsenic concentrations exceeded predicted effect levels in most sediment samples. However, it has been shown to be largely non‐bioavailable in previously published research on the Nene, limiting its potential for significant environmental harm. Phosphorus concentrations in river sediments are high in comparison to the soils in the catchment and in comparison with sediment–P concentrations in other published lowland catchment studies, indicating a large potential for eutrophication should the Phosphorus be, or become, bioavailable. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
River floodplains act as sinks for fine‐sediment and sediment‐associated contaminants. Increasing recognition of their environmental importance has necessitated a need for an improved understanding of the fate and residence times of overbank sediment deposits over a broad range of timescales. Most existing investigations have focused on medium‐term accretion rates, which represents net deposition from multiple flood events over several decades. In contrast, the fate of recently‐deposited sediment during subsequent overbank events has received only limited attention. This paper presents a novel tracing‐technique for documenting the remobilization of recent overbank sediment on river floodplains during subsequent inundation events, using the artificial radionuclides, caesium‐134 (134Cs) and cobalt‐60 (60Co). The investigation was conducted within floodplains of the Rivers Taw and Culm in Devon, UK. Small quantities of fine‐sediment (< 63 µm dia.), pre‐labelled with known activities of either 134Cs or 60Co, were deposited at 15 locations across each floodplain. Surface inventories, measured before and after three consecutive flood events, were used to estimate sediment loss (in g m–2). Significant reductions provided evidence of the remobilization of the labelled sediment by inundating floodwaters. Spatial variations in remobilization were related to localized topography. Sediment remobilized during the first two events for the River Taw floodplain were equivalent to 63 · 8% and 11 · 9%, respectively, of the original mass. Equivalent values for the River Culm floodplain were 49 · 6% and 12 · 5%, respectively, of the original mass. Sediment loss during the third event proved too small to be attributed to remobilization by overbank floodwaters. After the third event, a mean of 22 · 5% and 35 · 2% of the original mass remained on the Taw and Culm floodplains, respectively. These results provide evidence of the storage of the remaining sediment. The findings highlight the importance of remobilization of recently‐deposited sediment on river floodplains during subsequent overbank events and demonstrate the potential of the tracing‐technique. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Arsenic-contaminated mine tailings that were discharged into Whitewood Creek at Lead, South Dakota, from 1876 to 1978, were deposited along the floodplains of Whitewood Creek and the Belle Fourche River. The resulting arsenic-contaminated floodplain deposit consists mostly of overbank sediments and filled abandoned meanders along White-wood Creek, and overbank and point-bar sediments along the Belle Fourche River. Arsenic concentrations of the contaminated sediments indicate the degree of dilution of mine tailings by uncontaminated alluvium. About 13 per cent of the 110 × 106 Mg of mine tailings that were discharged at Lead were deposited along the Whitewood Creek floodplain. Deposition of mine tailings near the mouth of Whitewood Creek was augmented by an engineered structure. About 29 per cent of the mine tailings delivered by Whitewood Creek were deposited along the Belle Fourche River floodplain. About 60 per cent of that sediment is contained in overbank deposits. Deposition along a segment of the Belle Fourche River was augmented by rapid channel migration. The proportions of contaminated sediment stored along Whitewood Creek and the Belle Fourche River are consistent with sediment storage along the floodplains of perennial streams in other, similar sized watersheds.  相似文献   

4.
Many upland river catchments in the UK have been historically mined for metals such as lead (Pb) and zinc (Zn), and as part of the mining process large quantities of metal contaminated sediment were released into the river system. The levels of sediment associated heavy metal contamination in river systems are largely controlled by the volumes of contaminated sediment released into the river and fluvial processes (e.g. erosion and deposition). As a consequence, the contamination patterns are often highly variable, which can make it difficult to create accurate assessments of the volumes of contaminated sediment remaining within the system. This paper uses a combination of techniques to establish the volumes of metal contaminated sediment remaining within the River Swale, UK. Firstly, using detailed field sampling and a geographical information system (GIS), it estimates the volumes of sediment remaining within one formerly mined tributary (Gunnerside Beck) which is then extrapolated to represent the contaminant volumes on other tributaries of the River Swale. Secondly, combining fresh field data with a range of existing data, volumes of contaminated sediment on the main stream of the River Swale are established. This two tier approach shows that significant volumes of contaminated sediment remain within the River Swale, with over 32 000 tonnes of Pb within the mined tributaries and 123 000 tonnes within the main channel belt of the River Swale itself. This represents approximately 28% of the Pb produced in the Swale catchment. Given these volumes and present day rates of removal, it may take over 5000 years for all of the metal rich sediment to be removed from the catchment. If the contaminated sediment is used as a tracer, present day rates of reworking of floodplain sediment can be calculated to be 0·02% per year. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
An assessment of water quality measurements during a spring flood in the Elbe River is presented. Daily samples were taken at a site in the middle Elbe, which is part of the network of the International Commission for the Protection of the Elbe River (IKSE/MKOL). Cluster analysis (CA), principal components analysis (PCA), and source apportionment (APCS apportioning) were used to assess the flood‐dependent matter transport. As a result, three main components could be extracted as important to the matter transport in the Elbe River basin during flood events: (i) re‐suspended contaminated sediments, which led to temporarily increased concentrations of suspended matter and of most of the investigated heavy metals; (ii) water discharge related concentrations of pedogenic dissolved organic matter (DOM) as well as preliminary diluted concentrations of uranium and chloride, parameters with stable pollution background in the river basin; and (iii) abandoned mines, i.e., their dewatering systems, with particular influence on nickel, manganese, and zinc concentrations.  相似文献   

6.
A metal-contaminated overbank deposit in west-central South Dakota resulted from the discharge of a large volume of mine tailings into a river system between the late 1800s and 1977. The deposit along the Belle Fourche River is typically up to 2 m thick and extends about 90 m away from the channel along the insides of meander bends. The sediments contain above-background levels of copper, iron, manganese, zinc, and particularly arsenic, which is commonly two orders of magnitude above background level in the contaminated sediments. Carbonate minerals in the deposit limit the desorption of arsenic by preventing acid formation. Arsenic concentrations provide a measure of the dilution of mine tailings by uncontaminated sediment. The arsenic appears to have been transported and deposited as arsenopyrite, but is now at least partially associated with iron oxides and hydroxides. Within individual samples, arsenic concentration has an inverse relation with grain size that results from the more efficient accumulation of arsenic on the greater surface area of the smaller particles. Arsenic concentration is inversely related to the sample weight percent finer than 16 μm, however, as a consequence of the dilution of the contaminated sediments by uncontaminated sediment with a finer grain-size distribution. Dilution by uncontaminated sediment from tributaries cause arsenic concentrations to decrease by a factor of 3 along 100 km of floodplain. An influx at high streamflow of uncontaminated sediment from terraces and the premining floodplain as well as from tributaries causes arsenic concentrations in parts of the contaminated deposit that are farthest away from the channel to be two to three times less than arsenic concentrations in overbank sediment that is immediately adjacent to the channel.  相似文献   

7.
Many urban rivers receive significant inputs of metal‐contaminated sediments from their catchments. Restoration of urban rivers often creates increased slack water areas and in‐channel vegetation growth where these metal‐contaminated sediments may accumulate. Quantifying the accumulation and retention of these sediments by in‐channel vegetation in urban rivers is of importance in terms of the planning and management of urban river restoration schemes and compliance with the Water Framework Directive. This paper investigates sediment properties at four sites across three rivers within Greater London to assess the degree to which contaminated sediments are being retained. Within paired restored and unrestored reaches at each site, four different bed sediment patch types (exposed unvegetated gravel, sand, and silt/clay (termed ‘fine’) sediments, and in‐channel vegetated sediments) were sampled and analysed for a range of metals and sediment characteristics. Many samples were found to exceed Environment Agency guidelines for copper (Cu), lead (Pb) and zinc (Zn) and Dutch Intervention Values for Cu and Zn. At all sites, sediments accumulating around in‐channel vegetation were similar in calibre and composition to exposed unvegetated fine sediments. Both bed sediment types contained high concentrations of pseudo‐total and acetic acid extractable metal concentrations, potentially due to elevated organic matter and silt/clay content, as these are important sorbtion phases for metals. This implies that the changed sediment supply and hydraulic conditions associated with river restoration may lead to enhanced retention of contaminated fine sediments, particularly around emergent plants, frequently leading to the development of submerged and emergent landforms and potential river channel adjustments. High pseudo‐total metal concentrations were also found in gravel bed sediments, probably associated with iron (Fe) and manganese (Mn) oxyhydroxides and discrete anthropogenic metal‐rich particles. These results highlight the importance of understanding the potential effects of urban river restoration upon sediment availability and channel hydraulics and consequent impacts upon sediment contaminant dynamics and storage. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Edwin  Ortiz  Barry P.  Roser 《Island Arc》2006,15(2):223-238
Abstract Basement rocks in the catchment of the Kando River in southwest Japan can be divided into two main groups. Paleogene to Cretaceous felsic granitoids and volcanic rocks dominate in the upstream section, and more mafic, mostly Miocene volcanic and volcaniclastic rocks occur in the downstream reaches. Geochemically distinctive Mount Sambe adakitic volcanic products also crop out in the west. X‐ray fluorescence analyses of major elements and 14 trace elements were made of two size fractions (<180 and 180–2000 µm) from 86 stream sediments collected within the catchment, to examine contrasts in composition between the fractions as a result of sorting and varying source lithotype. The <180 µm fractions are depleted in SiO2 and enriched in most other major and trace elements relative to the 180–2000 µm fractions. Na2O, K2O, Ba, Rb and Sr are either depleted relative to the 180–2000 µm fractions, or show little contrast in abundance. Sediments from granitoid‐dominated catchments are distinguished by greater K2O, Th, Rb, Ba and Nb than those derived from the Miocene volcanic rocks. Granitoid‐derived <180 µm fractions are also enriched in Zr, Ce and Y. Sediments derived from the Miocene volcanic rocks generally contain greater TiO2, Fe2O3*, Sc, V, MgO and P2O5, reflecting their more mafic source. Sediments containing Sambe volcanic rocks in their source are marked by higher Sr, CaO, Na2O and lower Y, reflecting an adakitic signature that persists into the lower main channel, where compositions become less variable as the bedload is homogenized. Normalization against source averages shows that compositions of the 180–2000 µm fractions are less fractionated from their parents than are the <180 µm fractions, which are enriched for some elements. Contrast between the size fractions is greatest for the granitoid‐derived sediments. Weathering indices of the sediments are relatively low, indicating source weathering is moderate, and typical of temperate climates. Some zircon concentration has occurred in granitoid‐derived <180 µm fractions relative to 180–2000 µm counterparts, but Th/Sc and Zr/Sc ratios overall closely reflect both provenance and homogenization in the lower reaches.  相似文献   

9.
The internal riverine processes acting upon phosphorus and dissolved silicon were investigated along a 55 km stretch of the River Swale during four monitoring campaigns. Samples of river water were taken at 3 h intervals at sites on the main river and the three major tributaries. Samples were analysed for soluble reactive phosphorus, total dissolved phosphorus, total phosphorus, dissolved silicon and suspended solid concentration. Mass‐balances for each determinand were calculated by comparing the total load entering the river with the total load measured at the downstream site. The difference, i.e. the residual load, showed that there was a large retention of phosphorus and silicon within the system during the March 1998 flood event, but the other three campaigns produced net‐exports. Cumulative residual loads were calculated for each determinand at 6 h intervals throughout each campaign. This incremental approach showed that the mass‐balance residuals followed relatively consistent patterns under various river discharges. During stable low‐flow, there was a retention of particulate phosphorus within the system and also a retention of total dissolved phosphorus and soluble reactive phosphorus, most likely caused by the sorption of soluble phosphorus by bed‐sediments. In times of high river‐discharge, there was a mobilization and export of stored bed‐sediment phosphorus. During overbank flooding, there was a large retention (58% of total input) of particulate phosphorus within the system, due to the mass deposition of phosphorus‐rich sediment onto the floodplain. Soluble phosphorus was also retained within the system by sequestration from the water column by the high concentration of suspended solids. The dissolved silicon mass‐balance residuals had a less consistent pattern in relation to river discharge. There was a large retention of dissolved silicon during overbank flooding, possibly due to sorption onto floodplain soil, and net‐exports during periods of both stable low‐flow and rising limbs of hydrographs, due to release of dissolved silicon from pore‐waters. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
This paper investigates the impact of a 1000‐year flood in August 2002 on floodplains and valley morphology of an Austrian mixed alluvial bed rock river. Discharges with a recurrence interval between 500 and 2000 years caused distinctive overbank scouring and material deposition in the floodplains. After the 1000‐year flood, those morphologically affected areas were at random intervals documented over the whole longitudinal profile. In addition to overbank erosion in curved sections (cut‐offs), the river bed locally widened, floodplain stripping occurred and local overbank scours were documented along straight parts of the river. A hydrodynamic‐numerical model, combined with field measurements, was used to analyse the cause of these erosional landforms. Based on the modelled hydraulic conditions for a one‐year flood (30–78 ms–1) and the catastrophic 2002 event (700–800 ms–1), the numerical results allowed a cause‐effect study with 19 parameters. Deterministic and statistical analysis (ANOVA, discriminant analysis) showed that the morphodynamic effects of the 2002 flood were influenced by the variability of valley morphology of the Kamp River, which led partially to supercritical flow during flood constriction. These processes were in some cases also anthropogenically influenced. Lateral constriction and expansion of the valley geometry over short distances led to scouring and aggradation within the inundated areas during the event. These morphological features were therefore responsible for the elongated scour holes in the floodplains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The importance of long‐term storage of heavy metals in groyne fields, functioning over 150 years, is investigated for the River Odra (Oder), western Poland. Construction of groynes along the Odra preceded rapid development of heavy industrialization in the largest coal mine districts in Poland and the Czech Republic that resulted in persistent riverine pollution. The 187 km long Middle Odra reach was repeatedly channelized from the first half of the eighteenth century to the turn of the twentieth century, during which time partially filled groyne fields were dissected by new bank lines and groyne systems, with older groyne fields partially keyed into the floodplain. Consequently, concentrations of zinc, lead, cadmium, and copper within historically deposited groyne field sediments exceed local geochemical background levels by more than 60, 40, 15 and 10 times, respectively. Sediments contaminated with heavy metals occur within three distinctive geomorphic zones: zone I is up to 250 m wide and furthest from the present channel, comprising decimeter‐thick polluted sediments, overlying eighteenth century sand and gravel bars; zone II represents the former nineteenth century groyne fields, with widths between 10 and 100 m, filled with as much as 3 m of polluted sediments; zone III represents the twentieth century groyne fields, which are several to a dozen metres wide and filled with polluted sediments averaging depths of more than 2 m. This investigation indicates that large and extensive sediment quantities of moderately polluted sediments are stored immediately along the banks of the River Odra. These sediments could be a significant secondary pollution source and therefore careful maintenance of contemporary bank protection structures is required. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Beside damages of infrastructure in industrial regions, extreme floods can cause contamination with particle‐bound pollutants, e. g., due to erosion of soils and sediments. In order to predict contamination with inorganic pollutants, the transport and fate of arsenic, lead, and mercury during a fictive flood event of River Vereinigte Mulde in the region of Bitterfeld (Germany) with 200 years recurrence time was modeled. The finite element model system Telemac2D, which is subdivided into a hydrodynamic (Telemac‐2D), a transport (Subief‐2D), and a water quality module (wq2subief) was applied. The transport and water quality model models were calibrated using results of sediment trap exposures in the floodplain of River Vereinigte Mulde. Model results exhibited that the spatial patterns of particle‐associated arsenic and lead concentrations significantly changed. Extended, mostly agriculturally used areas showed arsenic and lead concentrations between 150 and 200 mg kg–1 and 250 and 300 mg kg–1, respectively, while urban areas were to a great extent spared from high contamination with arsenic and lead. Concentrations of particle‐associated mercury showed a pattern distinct from those of arsenic and lead. Outside of small patches with concentrations up to 63 mg kg–1, concentrations of particle‐associated mercury remained close to zero. Differences in the spatial patterns of the three pollutants regarded mainly arise from significantly different initial and boundary conditions. Sensitivity analyses of initial and boundary conditions revealed a high sensitivity of particle‐bound pollutant concentrations, whereas the sensitivities of concentrations of suspended sediments and soluble pollutants were mediocre to negligible.  相似文献   

13.
On December 26, 2015 (Boxing Day), an exceptional flood event occurred in the Irwell catchment, United Kingdom, when the neighbouring Mersey catchment experienced a much more typical winter run‐off event. This provided an opportunity to examine the influence of high‐magnitude hydrological processes on the behaviour of fine‐grained metal‐contaminated bed sediments. Forty sites across the two catchments were sampled for channel bed fine sediment storage and sediment‐associated metal(loid) concentrations prior to, and following, the flooding. Sediments were analysed for total As, Cr, Cu, Pb, and Zn and then subjected to a five‐step sequential extraction procedure. Despite a significant reorganisation of fine‐grained (<63 μm) sediment storage, metal(loid) concentrations demonstrated markedly conservative behaviour with no significant difference observed between pre‐flooding and post‐flooding values across both catchments. Estimates of the channel bed storage of sediment‐associated metal(loid)s also showed minimal change as a result of the flooding. The metal partitioning data reveal only minor changes in the mobility of bed sediment‐associated metal(loid)s, indicating that such flood events do not increase the availability of sorbed contaminants in these catchments. Post‐flooding bed sediment metal(loid) loadings remain high, indicating persistent and long‐lasting sources of contamination within the Irwell and upper Mersey fluvial network.  相似文献   

14.
Six plains cottonwoods along the axis of a meander were excavated to determine if dendrochronology could identify the year and location of germination and date past overbank sedimentation events. Samples from all excavated trees showed clear anatomical changes associated with burial, including increased vessel size, decreased definition of annual ring boundaries, and decreased ring widths. Some of these burial signatures were created by deposition of only a few centimeters of sediment, and most burial events were detected by multiple samples from the same tree. Four of the trees germinated at or near the upper surfaces of bar deposits, while two germinated within thin overbank deposits draped over bar deposits, indicating that germination is closely associated with bars. Dates and inferred thicknesses of overbank sedimentation events are consistent with repeated topographic surveys and data obtained from cesium-137 (137Cs) analyses. However, the record of overbank sedimentation extracted from the trees does not entirely reflect the history of past peak discharges documented by stream gaging, largely because individual trees are progressively less likely to be flooded through time as the river migrates farther away. Germination dates and locations closely track past positions of the river channel. Germination elevations and the elevations of the tops of point bars appear to be decreasing with time as the bend migrates, implying vertical incision by Powder River at a rate of 7.1 ± 4.3 mm/yr. The rate of floodplain growth determined by elevation changes decreases progressively through time, ultimately reaching an apparent plateau after 0.8–1.3 m of vertical accretion. While similar patterns of vertical accretion have previously been interpreted as resulting from decreasing flood probability with increasing floodplain elevation, distance from the channel is also a first-order control on vertical floodplain growth. © 2019 John Wiley & Sons, Ltd.  相似文献   

15.
The rise in stream stage during high flow events (floods) can induce losing stream conditions, even along stream reaches that are gaining during baseflow conditions. The aquifer response to flood events can affect the geochemical composition of both near‐stream groundwater and post‐event streamflow, but the amount and persistence of recharged floodwater may differ as a function of local hydrogeologic forcings. As a result, this study focuses on how vertical flood recharge varies under different hydrogeologic forcings and the significance that recharge processes can have on groundwater and streamflow composition after floods. River and shallow groundwater samples were collected along three reaches of the Upper San Pedro River (Arizona, USA) before, during and after the 2009 and 2010 summer monsoon seasons. Tracer data from these samples indicate that subsurface floodwater propagation and residence times are strongly controlled by the direction and magnitude of the dominant stream–aquifer gradient. A reach that is typically strongly gaining shows minimal floodwater retention shortly after large events, whereas the moderately gaining and losing reaches can retain recharged floodwater from smaller events for longer periods. The moderately gaining reach likely returned flood recharge to the river as flow declined. These results indicate that reach‐scale differences in hydrogeologic forcing can control (i) the amount of local flood recharge during events and (ii) the duration of its subsurface retention and possible return to the stream during low‐flow periods. Our observations also suggest that the presence of floodwater in year‐round baseflow is not due to long‐term storage beneath the streambed along predominantly gaining reaches, so three alternative mechanisms are suggested: (i) repeated flooding that drives lateral redistribution of previously recharged floodwater, (ii) vertical recharge on the floodplain during overbank flow events and (iii) temporal variability in the stream–aquifer gradient due to seasonally varying water demands of riparian vegetation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Two controlled flow events were generated by releasing water from a reservoir into the Olewiger Bach, located near Trier, Germany. This controlled release of near bank‐full flows allowed an investigation of the fine sediment (<63 µm) mobilized from channel storage. Both a winter (November) and a summer (June) release event were generated, each having very different antecedent flow conditions. The characteristics of the release hydrographs and the associated sediment transport indicated a reverse hysteresis with more mass, but smaller grain sizes, moving on the falling limb. Fine sediment stored to a depth of 10 cm in the gravels decreased following the release events, indicating the dynamic nature and importance of channel‐stored sediments as source materials during high flow events. Sediment traps, filled with clean natural gravel, were buried in riffles before the release of the reservoir water and the total mass of fine sediment collected by the traps was measured following the events. Twice the mass of fine sediment was retained by the gravel traps compared with the natural gravels, which may be due to their altered porosity. Although the amount of fine sediment collected by the traps was not significantly related to measures of gravel structure, it was found to be significantly correlated to measures of local flow velocity and Froude number. A portion of the traps were fitted with lids to restrict surface exchange of water and sediment. These collected the highest amounts of event‐mobilized sediments, indicating that inter‐gravel lateral flows, not just surface infiltration of sediments, are important in replenishing and redistributing the channel‐stored fines. These findings regarding the magnitude and direction of fine sediment movement in gravel beds are significant in both a geomorphic and a biological context. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Recent research into flood modelling has primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology. River channels are often represented by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. However, field evidence demonstrates that significant morphological changes can occur during floods to mobilize the boundary sediments. Despite this, the effect of channel morphology on model results has been largely unexplored. To address this issue, the impact of channel cross‐section geometry and channel long‐profile variability on flood dynamics is examined using an ensemble of a 1D–2D hydraulic model (LISFLOOD‐FP) of the ~1 : 2000 year recurrence interval floods in Cockermouth, UK, within an uncertainty framework. A series of simulated scenarios of channel erosional changes were constructed on the basis of a simple velocity‐based model of critical entrainment. A Monte‐Carlo simulation framework was used to quantify the effects of this channel morphology together with variations in the channel and floodplain roughness coefficients, grain size characteristics and critical shear stress on measures of flood inundation. The results showed that the bed elevation modifications generated by the simplistic equations reflected an approximation of the observed patterns of spatial erosion that enveloped observed erosion depths. The effect of uncertainty on channel long‐profile variability only affected the local flood dynamics and did not significantly affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models generally do not need to account for within event morphodynamic changes of the type and magnitude of event modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. boundary conditions. Instead, morphodynamic change needs to happen over a series of events to become large enough to change the hydrodynamics of floods in supply limited gravel‐bed rivers such as the one used in this research. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This article presents results from an investigation of the hydraulic characteristics of overbank flows on topographically‐complex natural river floodplains. A two‐dimensional hydraulic model that solves the depth‐averaged shallow water form of the Navier–Stokes equations is used to simulate an overbank flow event within a multiple channel reach of the River Culm, Devon, UK. Parameterization of channel and floodplain roughness by the model is evaluated using monitored records of main channel water level and point measurements of floodplain flow depth and unit discharge. Modelled inundation extents and sequences are assessed using maps of actual inundation patterns obtained using a Global Positioning System, observational evidence and ground photographs. Simulation results suggest a two‐phase model of flooding at the site, which seems likely to be representative of natural floodplains in general. Comparison of these results with previous research demonstrates the complexity of overbank flows on natural river floodplains and highlights the limitations of laboratory flumes as an analogue for these environments. Despite this complexity, frequency distributions of simulated depth, velocity and unit discharge data closely follow a simple gamma distribution model, and are described by a shape parameter (α) that exhibits clear systematic trends with changing discharge and floodplain roughness. Such statistical approaches have the potential to provide the basis for computationally efficient flood routing and overbank sedimentation models. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
This paper reports on the erosion, transport, and deposition processes associated with an overbank deposit formed by the flooding of the Abu River on July 28, 2013, in Yamaguchi City, Japan. At the study site, river flows overtopped the levee revetment upstream of a meander bend cutting it off and flowing back into the main channel downstream. In this sequential process, it deposited large amounts of sediments, ranging from mud to cobbles, on the floodplain. The surface of paddy fields adjacent to a railway line, located at the center of the affected floodplain, was severely eroded by the flood flows. Overbank deposits composed of both upstream finer sediments and eroded coarser terrestrial sediments are laid down in the affected area. Large amounts of pebbles and cobbles originating from the eroded terrestrial area formed a gravelly pile on top of the sand and gravel sediments derived from the river. This finding indicates that sands and gravels were deposited prior to the formation of the gravelly pile, probably before and during peak flood flows. An inverse grading structure is evident in the lower to middle part of these comparatively thick deposits, most likely due to differences in transport pattern between entrained terrestrial gravels and upstream finer sediments.  相似文献   

20.
Avulsion, the natural relocation of a river, is a key process in the evolution of subaerial fans, river floodplains and deltas. The causes of avulsion are poorly understood, which is partly due to the scarcity of field studies of present avulsions. At present, two avulsions are occurring on the middle and lower Taquari megafan, Pantanal basin, south‐western Brazil. Here we present an analysis of the causes of these avulsions based on field and remote sensing data and show that avulsions on megafans can be controlled by both upstream and downstream processes. The middle fan avulsion (started in 1997–1998) is a result of upstream control: overbank aggradation was caused by the (variable) input of sandy sediment into the system, which caused channel‐belt superelevation and also created an easily erodible subsurface favouring bank retreat, crevassing, and scour of deep floodplain channels. The sandy subsurface in this area is inferred to have been a major factor in the causation of this avulsion under conditions of little gradient advantage. The lower fan avulsion (started c. 1990) results from interplay of upstream and downstream controls, the latter being related to the local base level (the Paraguay River floodplain) at the toe of the fan. Channel and overbank aggradation on the lower fan was influenced by fan sub‐lobe progradation and channel backfilling. Fan sub‐lobe progradation caused a significant gradient advantage of the avulsion channel over the parent channel. Avulsions are commonly supposed to be preferentially triggered by high‐magnitude floods, when there is considerable channel‐belt superelevation. However, both avulsions studied by us were triggered by small to average floods, with modest channel‐belt superelevation. We conclude that flood magnitude and channel‐belt superelevation have been overrated as causes of avulsion, and demonstrate additional causes that influence the growth of crevasses into avulsions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号