首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
1 Introduction Time history analysis is usually needed not only for the seismic design of important structures, such as nuclear plants, large concrete dams and super high-rise buildings, but also for seismic performance based design. Performance-based design requires tha knowledge of the entire process of nonlinear seismic responses of structures be obtained, which depends on the ground motion time history as input for this analysis. However, because the observed strong-motion recordings are l…  相似文献   

2.
利用《中国地震动参数区划图》采用的地震动参数衰减关系,以及《中国地震动参数区划图》中地震动峰值加速度和地震动加速度反应谱特征周期反推不同设防烈度和设计地震分组对应的震级和震中距,再根据《建筑抗震设计规范》中各设防水准的峰值加速度确定对应的震级和震中距,进而根据地震动强度包线参数与震级和震中距关系计算地震动强度包线参数的取值,为基于强度包线函数生成人工地震动提供参考,并讨论强度包线参数的取值规律:(1)随着设防烈度的提高,加速度时程曲线上升段持续时间t1和平稳段持续时间ts减小,下降段衰减指数c增大;(2)随着地震水准和设计地震分组的提高,加速度时程曲线上升段持续时间t1和平稳段持续时间ts增加,下降段衰减指数c减小;(3)在生成人工地震动时,除考虑峰值加速度和设计地震分组影响外,还需要考虑设防烈度影响。  相似文献   

3.
A companion paper has investigated the effects of intensity measure (IM) selection in the prediction of spatially distributed response in a multi‐degree‐of‐freedom structure. This paper extends from structural response prediction to performance assessment metrics such as probability of structural collapse; probability of exceeding a specified level of demand or direct repair cost; and the distribution of direct repair loss for a given level of ground motion. In addition, a method is proposed to account for the effect of varying seismological properties of ground motions on seismic demand that does not require different ground motion records to be used for each intensity level. Results illustrate that the conventional IM, spectral displacement at the first mode, Sde(T1), produces higher risk estimates than alternative velocity‐based IM's, namely spectrum intensity, SI, and peak ground velocity, PGV, because of its high uncertainty in ground motion prediction and poor efficiency in predicting peak acceleration demands. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Statistical methods are available which predict the maximum response of simple oscillators given the peak acceleration (Ap), peak velocity (Vp) or peak displacement (Dp) of seismic ground motions. An alternative parameter, namely an ordinate (or ordinates) of the Fourier amplitude spectrum of ground motion acceleration, FS(f), may in fact be a preferred predictor of peak response, especially in a frequency range close to f. Other statistical methods (attenuation laws) use distance R and other parameters such as magnitude (M), Modified Mercalli epicentral Intensity (Io) and Modified Mercalli site Intensity (MMI or Is) to predict spectral velocity (Sv(f)), etc. In using such approaches, it is most desirable to know the total uncertainty in the predicted peak response of the system given the starting parameter values. An extensive strong motion data set is used to study these questions, The most direct prediction models are found to be preferable (have lower prediction dispersion) but data may not be available in all regions to permit their use.  相似文献   

5.
Multiple regression analyses of the duration of earthquake ground acceleration are presented. Two types of duration are considered, i.e. bracketed duration and normalized duration. The bracketed duration ta is defined as the elapsed time between the first and last acceleration excursions greater than a [cm/s2], and the normalized duration Tα is defined as the elapsed time between the first and last acceleration excursions greater than α times (0 < α < 1) the peak acceleration. Employed are 394 components of horizontal strong motion acceleration records obtained at 67 free field sites in Japan. With the use of multiple regression analysis, the dependence of the bracketed and normalized durations on earthquake magnitude and epicentral distance is studied.  相似文献   

6.
Most of the step-by-step time integration algorithms for structural dynamics require an initial acceleration vector to be specified, in addition to displacement and velocity vectors. A consistent initial acceleration vector may be calculated by solving the equations of motion at the initial time, while a truncated initial acceleration vector is obtained by setting the acceleration values to zero. Although the truncated starting procedure decreases computational effort, it is shown to affect accuracy adversely. For the structural dynamics algorithms considered herein, the rate at which the numerical solution converges to the exact solution is Ot) when the truncated starting procedure is used, compared to Ot2) when consistent initial acceleration values are used.  相似文献   

7.
Ground motions are often scaled to certain convenient target spectra in the response assessment of structures. While uniform hazard spectrum (UHS) is more widely used, conditional mean spectrum (CMS) is recently proposed as a more desirable target for scaling of real accelerograms. In this backdrop, the present study spectrally scales, using wavelets, a set of near-field and far-field ground motions to both the targets, viz., UHS and CMS. Relevance of a set of useful ground motion characteristics, viz., the peak ground acceleration-to-peak velocity ratio (amax/vmax), predominant period (Tp), Arias intensity (Ia), Housner intensity (IH), cumulative absolute velocity (CAV) and significant duration (Td), is reviewed. Influence of ground motion scaling is discussed in terms of possible changes of such identified parameters. Seismic demand of horizontally irregular structures is assessed under both scaled and seed records recognizing strength dependent stiffness. Threshold of the scale factor, shown to have well-correlated with the change of ground motion characteristics, may be as high as ~10 to adequately estimate torsion-induced amplification in asymmetric system without any bias.  相似文献   

8.
Spectral shape,epsilon and record selection   总被引:4,自引:0,他引:4  
Selection of earthquake ground motions is considered with the goal of accurately estimating the response of a structure at a specified ground motion intensity, as measured by spectral acceleration at the first‐mode period of the structure, Sa(T1). Consideration is given to the magnitude, distance and epsilon (ε) values of ground motions. First, it is seen that selecting records based on their ε values is more effective than selecting records based on magnitude and distance. Second, a method is discussed for finding the conditional response spectrum of a ground motion, given a level of Sa(T1) and its associated mean (disaggregation‐based) causal magnitude, distance and ε value. Records can then be selected to match the mean of this target spectrum, and the same benefits are achieved as when records are selected based on ε. This mean target spectrum differs from a Uniform Hazard Spectrum, and it is argued that this new spectrum is a more appropriate target for record selection. When properly selecting records based on either spectral shape or ε, the reductions in bias and variance of resulting structural response estimates are comparable to the reductions achieved by using a vector‐valued measure of earthquake intensity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This paper describes the development and numerical verification of a test method to realistically simulate the seismic structural response of full‐scale buildings. The result is a new field testing procedure referred to as the linear shaker seismic simulation (LSSS) testing method. This test method uses a linear shaker system in which a mass mounted on the structure is commanded a specified acceleration time history, which in turn induces inertial forces in the structure. The inertia force of the moving mass is transferred as dynamic force excitation to the structure. The key issues associated with the LSSS method are (1) determining for a given ground motion displacement, xg, a linear shaker motion which induces a structural response that matches as closely as possible the response of the building if it had been excited at its base by xg (i.e. the motion transformation problem) and (2) correcting the linear shaker motion from Step (1) to compensate for control–structure interaction effects associated with the fact that linear shaker systems cannot impart perfectly to the structure the specified forcing functions (i.e. the CSI problem). The motion transformation problem is solved using filters that modify xg both in the frequency domain using building transfer functions and in the time domain using a least squares approximation. The CSI problem, which is most important near the modal frequencies of the structural system, is solved for the example of a linear shaker system that is part of the NEES@UCLA equipment site. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
基于目标反应谱和包线的地震动合成   总被引:2,自引:1,他引:1  
本文给出了以目标反应谱和目标包线函数为双目标函数的人工地震动合成方法,不仅使人工地震动符合目标反应谱,还在迭代过程中对地震动波形进行调整,使之基本符合目标包线函数,并消除了加速度时程的基线偏移,使速度时程和位移时程更为合理。本文认为当研究非线性结构体系的动力反应规律时,有必要对输入的人工地震动时程的反应谱和包线均进行比较准确的控制,使人工地震动时程符合多个统计特征。  相似文献   

11.
A statistical analysis is performed to investigate the significance of peak ground acceleration to velocity ratio (a/v) on the displacement ductility demand of simple bilinear hysteretic systems. Three groups of earthquake records representative of low, normal and high<a/v ranges are used as input ground motions. The design yield strength of the inelastic systems is specified from the base shear formula in the 1980 National Building Code of Canada (NBCC 1980) and that in NBCC 1985 respectively. The former case represents the common practice of specifying seismic design base shear based on a peak site acceleration, while in the latter case the base shear is specified based on peak ground velocity and a/v ratio. Mean displacement ductility demands are obtained for the three groups of ground motions; and the corresponding dispersion characteristics are examined. The results show that the ground motion<a/v range has a significant effect on the displacement ductility demand, and it should be accounted for in design strength specification.  相似文献   

12.
基于目标功率谱和包线的地震动合成   总被引:2,自引:0,他引:2  
本文给出了以目标功率谱和目标包线函数为双目标函数的人工地震动合成方法,使人工地震动不仅符合目标功率谱,还基本符合目标包线函数,并对加速度基线进行了调整,使速度时程和位移时程更为合理。作者认为如果用反应谱作为目标谱,生成的人工地震动时程可能会弱化地震动的随机特性,用这样的人工地震动时程作为输入来分析建筑结构的非线性动力反应,不是理想的选择。对建筑结构进行非线性时程分析时,用基于功率谱的人工地震动作为输入,应当是一种更为合理的方法。作者认为平方和具有明确的物理意义,是随机信号的总能量参数,并通过理论分析和数值计算,对于一定持时的随机平稳信号样本,平方和(持时×平方平均值)对振幅起重要控制作用。平方和、归一化功率谱、时域包线函数是基于功率谱模型的地震动三要素。  相似文献   

13.
The earthquake hazard has been evaluated for 10 km×10 km area around Kyeongju. The ground motion potentials were determined based on equivalent linear analysis by using the data obtained from in situ and laboratory tests. In situ tests include 16 boring investigations, 4 crosshole, 12 downhole, 26 spectral analysis of surface waves tests, and in the laboratory, resonant column tests were performed. The peak ground accelerations range between 0.141g and 0.299g on collapse level earthquake and between 0.050g and 0.120g on operation level earthquake, respectively, showing the high potential of amplification in the deep alluvial layer in Kyeongju area. Distribution maps of site amplification for the peak acceleration, amplification factors (Fa and Fv) and dominant site period of Kyeongju are constructed using geographic information system tools. The amplification factor based on the Korean seismic design guide underestimated the motion in short range and overestimated the motion in mid-period range in Kyeongju. The importance of site-specific analysis and the need for the improved site characterization method are introduced.  相似文献   

14.
Wind tunnel tests were conducted to examine the fetch effect of a gravel surface on the ?ux pro?le of the sand cloud blowing over it using typical dune sand. The results suggest that the ?ux pro?le of blown sand over a gravel surface differs from that over a sandy surface and is characterized by a peak ?ux at a height above the surface while that over a sandy surface decreases exponentially with height. The ?ux pro?le of a sand cloud over a gravel surface can be expressed by a Gaussian peak function: q = a + b exp (?0·5((h ? c)/d)2), where q is the sand transport rate at height h, and a, b, c and d are regression coef?cients. The signi?cance of the coef?cients in the function could be de?ned in accordance with the fetch length of the gravel surface and wind velocity. Coef?cient c represents the peak ?ux height and increases with both wind velocity and fetch length, implying that the peak ?ux height is related to the bounce height of the particles in the blowing sand cloud. Coef?cient d shows a tendency to increase with both wind velocity and fetch length. The sum of a and b, representing the peak ?ux, increases with wind velocity but decreases with fetch length. The average saltation height derived from the cumulative percentage curve shows a tendency to increase with both the fetch length and wind velocity. For any fetch length of a gravel surface the sand transport equation is expressed as Q = C(1 ? Ut/U)(ρ/g)U3, where Q is the sand transport rate, U is the wind velocity, Ut is the threshold velocity measured at the same height as U, g is the gravitational acceleration, ρ is the air density, C is a proportionality coef?cient that decreases with the fetch length of the gravel surface. At a given wind velocity, the sand transport rate over a gravel surface is only 52–68 per cent of that over a sandy surface. The ?ux rate in true creep over a gravel surface increases with wind velocity but decreases with the fetch length, whereas the creep proportion (the ratio of creep ?ux to the sand transport rate) decreases with both the wind velocity and fetch length. Two‐variable (including fetch length and wind velocity) equations were developed to predict the peak ?ux height, average saltation height and transport rate. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
2019年10月28日甘肃省夏河县发生5.7级地震,中国数字强震动台网的18个专业台站在此次地震中触发。本文处理捕获的54条三分向加速度记录,给出近场台站的地震动参数,绘制了震中附近区域峰值加速度等值线图,其长轴呈WN-ES方向展布。将实际观测数据与几种常用地震动衰减关系对比,发现俞言祥[1]短轴衰减预测模型能更好地反映此次地震的影响场。将振幅较大的62LBL、62BLX台的反应谱与我国抗震设计反应谱比较,采用最小二乘法拟合出不同震中距5个台站各周期谱加速度衰减特性,总结了此次地震的反应谱基本特征。运用H/V谱比法对4个典型台站进行场地地震反应分析,研究了局部场地条件对峰值加速度和峰值速度的影响过程。  相似文献   

16.
采用数值方法合成地震动时,除对反应谱拟合外,对峰值位移的拟合和天然地震动非平稳特性的模拟也具有重要的意义和工程应用前景。本文基于小波函数的拟合方法,提出了一种能够同时合成目标反应谱和峰值位移的地震动加速度时程。数值算例表明:该方法具有较快的收敛速度,可用较少的迭代运算实现对目标反应谱和目标峰值位移的较高精度拟合;相较于现有的其它拟合方法,由于所构造的小波函数具有时域局部特点,该方法合成的地震动能够较好地保留天然地震动的非平稳特性。   相似文献   

17.
The increasing number of wind turbines in active tectonic regions has attracted scientific interest to evaluate the seismic vulnerability of offshore wind turbines (OWTs). This study aims at assessing the deformation and collapse susceptibility of 2MW and 5MW OWTs subjected to shallow-crustal pulse-like ground motions, which has not been particularly addressed to date. A cloud-based fragility assessment is performed to quantify the seismic response for a given intensity measure and to assess the failure probabilities for pulse-like and non-pulse-like ground motions. The first-mode spectral acceleration Sa(T1) is found to be an efficient response predictor for OWTs, exhibiting prominent higher-mode behavior, at the serviceability and ultimate conditions. Regardless of earthquake type, it is shown that records with strong vertical components may induce nonlinearity in the supporting tower, leading to potential failure by buckling in three different patterns: (i) at tower base near platform level, (ii) close to tower top, and (iii) between the upper half of the main tower and its top. Type and extent of the damage are related to the coupled excitation of vertical and lateral higher modes, for which tower top acceleration response spectra Sa,i(Top) is an effective identifier. It is also observed that tower's slenderness ratio (l/d), the diameter-to-thickness ratio (d/t), and the rotor-nacelle-assembly mass (mRNA) are precursors for evaluating the damage mode and vulnerability of OWTs under both pulse-like and non-pulse-like ground motion records.  相似文献   

18.
在分析已有资料的基础上划分了兰州盆地与建设工程分布密切相关的T0、T1、T2、T3和T4级黄河阶地,建立201个土层地震反应模型。通过一维等效线性化计算和反应谱分析,得出兰州盆地沉积阶地50年超越概率10%地表地震动参数,分析阶地高度和vS≤500 m/s覆盖层厚度特征与地震动参数峰值加速度Am和加速度反应谱特征周期Tg的相关性。表明兰州盆地T0~T2阶地覆盖层厚度与50年超越概率10%Am呈正相关,T3及以上阶地覆盖层厚度对Am增大有明显的减小作用。Tg值随T0~T3阶地覆盖层厚度的增加而变大,当覆盖层厚度进一步变大,Tg值不再同步增大,阶地覆盖层厚度对Tg的影响是有限的,阶地海拔高度与地表50年超越概率10%地震动参数没有关系。  相似文献   

19.
This study examines the effect of the angle of seismic incidence θ on the fragility curves of bridges. Although currently, fragility curves of bridges are usually expressed only as a function of intensity measure of ground motion (IM) such as peak ground acceleration, peak ground velocity, or Sa(ω1), in this study they are expressed as a function of IM with θ as a parameter. Lognormal distribution function is used for this purpose with fragility parameters, median cm and standard deviation ζ to be estimated for each value of θ chosen from 0 < θ < 360°. A nonlinear 3D finite element dynamic analysis is performed, and key response values are calculated as demand on the bridge under a set of acceleration time histories with different IM values representing the seismic hazard in Los Angeles area. This method is applied to typical straight reinforced concrete bridges located in California. The results are validated with existing empirical damage data from the 1994 Northridge earthquake. Even though the sample bridges are regular and symmetric with respect to the longitudinal axis, the results indicate that the weakest direction is neither longitudinal nor transverse. Therefore, if the angle of seismic incidence is not considered, the damageability of a bridge can be underestimated depending on the incidence angle of seismic wave. Because a regional highway transportation network is composed of hundreds or even thousands of bridges, its vulnerability can also be underestimated. Hence, it is prudent to use fragility curves taking the incident angle of seismic waves into consideration as developed here when the seismic performance of a highway network is to be analyzed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we analyzed the strong ground motion from the November 12, 2017, Kermanshah earthquake in western Iran with moment magnitude (M) of 7.3. Nonlinear and linear amplification of ground motion amplitudes were observed at stations with soft soil condition at hypocentral distances below and above 100 km, respectively. Observation of large ground motion amplitudes dominated with long-period pulses on the strike-normal component of the velocity time series suggests a right-lateral component of movement and propagation of rupture towards southeast. Comparison of the horizontal peak ground acceleration (PGA) from the M 7.3 earthquake with global PGA values showed a similar decay in ground motion amplitudes, although it seems that PGA from the M 7.3 Kermanshah earthquake is higher than global values for NEHRP site class B. We also found that the bracketed duration (Db) was higher in the velocity domain than in the acceleration domain for the same modified Mercalli intensity (MMI) threshold. For example, Db reached ~?30 s at the maximum PGA while it was ~?50 s at the maximum peak ground velocity above the threshold of MMI?=?5. Although the standard design spectrum from Iranian Code of Practice for Seismic Resistant Design of Buildings (standard No. 2800) seems to include appropriate values for the design of structures with fundamental period of 1 s and higher, it is underestimated for near-field ground motions at lower periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号