首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The magnitude, occurrence rate and occurrence timing of floods in the Poyang Lake basin were analysed. The flood series were acquired by annual and seasonal maximum flow (AMF) sampling and peaks-over-threshold (POT) sampling. Nonstationarity and uncertainty were analysed using kernel density estimation and the bootstrap resampling methods. Using the relationships between flood indices and climate indices, i.e. El Niño/Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian Ocean Dipole (IOD) and Pacific Decadal Oscillation (PDO), the potential causes of flooding were investigated. The results indicate that (1) the magnitudes of annual and seasonal AMF- and POT-based sampled floods generally exhibit an increasing tendency; (2) the highest occurrence rates of floods identified were during the 1990s, when the flood-affected crop area, flood-damaged crop area and crop failure area reached the highest levels; and (3) ENSO and IOD are the major climate indices that significantly correlate with the magnitude and frequency of floods of the following year.

EDITOR A. Castellarin ASSOCIATE EDITOR T. Kjeldsen  相似文献   

3.
Assessing water resources is an important issue, especially in the context of climatic changes. Although numerous hydrological models exist, new approaches are still under investigation. In this context, we propose a modelling approach based on the physical principle of least action. We present new hypotheses to develop the model further, to widen its application. The improved version of the model MODHYPMA was applied on 20 sub-catchments in Africa and the USA. Its performance was compared with two well-known lumped conceptual models, GR4J and HBV. The model could be successfully calibrated and validated. In calibration, GR4J performed better, while other models had similar performance. In validation, MODHYPMA and GR4J performed similarly and better than HBV. The parameter λ has medium sensitivity while parameters λ and TX have low sensitivity. The parameter uncertainty for MODHYPMA, analysed using the GLUE methodology, was higher during high flows but with good p and r factors.

EDITOR D. Koutsoyiannis ASSOCIATE EDITOR not assigned  相似文献   

4.
This study developed a correction approach to improve the rainfall field estimation using the TRMM rainfall product in a sparsely-gauged mountainous basin. First, Thiessen polygons were generated to define the measurement domain of each raingauge. Second, the rainfall of TRMM pixels in each Thiessen polygon was corrected using a benchmark method based on the difference between the monthly rainfall estimated by a raingauge and the TRMM pixel that possessed a gauge station (referred to as a gauged pixel). Third, the rainfall values in the gauged pixels were adjusted to the weighted average value of the gauge rainfall and corrected pixel rainfall. Finally, the rainfall in the non-gauged TRMM pixels was corrected as the sum of two terms. The first term is the adjusted rainfall in the corresponding gauged pixel in the same Thiessen polygon, and the second term is the rainfall (after benchmark correction) difference between the current pixel and the gauged pixel. Our results indicate that the corrected rainfall data outperforms the original TRMM product in the simulations of moderate and low flows and outperforms the sparse raingauges in the simulations of both peak and low flows.

EDITOR A. Castellarin; ASSOCIATE EDITOR S. Huang  相似文献   

5.
This study is an attempt to determine the trends in monthly, annual and monsoon total precipitation series over India by applying linear regression, the Mann-Kendall (MK) test and discrete wavelet transform (DWT). The linear regression test was applied on five consecutive classical 30-year climate periods and a long-term precipitation series (1851–2006) to detect changes. The sequential Mann-Kendall (SQMK) test was applied to identify the temporal variation in trend. Wavelet transform is a relatively new tool for trend analysis in hydrology. Comparison studies were carried out between decomposed series by DWT and original series. Furthermore, visualization of extreme and contributing events was carried out using the wavelet spectrum at different threshold values. The results showed that there are significant positive trends for annual and monsoon precipitation series in North Mountainous India (zone NMI) and North East India (NEI), whereas negative trends were detected when considering India as whole.

EDITOR A. Castellarin ASSOCIATE EDITOR S. Kanae  相似文献   

6.
Joy Sanyal 《水文科学杂志》2017,62(9):1483-1498
Levees are not usually built to a uniform height due to the varying priority of protecting urban and agricultural lands and they are often maintained in segments. Ad hoc alteration of the heights of these segments may aggravate flood conditions. Alterations lead to complex feedback loops in velocity and depth of water that are difficult to predict. A large number of possible configurations of the levee segments renders a deterministic modelling approach ineffective. The current analysis, based on a two-dimensional hydrodynamic model involving 1000 Monte Carlo realizations of randomly varying levee heights in segments, presents a methodology of dealing with the effect of uncertainty in levee heights on the inundation pattern in a probabilistic framework. Spatially distributed model outcomes include the likelihood of inundation, range and standard deviation of flood depths and maximum speed of water. The results indicate the necessity of adopting a probabilistic approach for robust flood hazard assessment when dealing with levee segments with uncertain heights.

EDITOR M.C. Acreman; ASSOCIATE EDITOR H. Kreibich  相似文献   

7.
A combination of statistical hypothesis testing methods (Mann-Whitney, Mann-Kendall and Spearman’s rho) and visual exploratory analysis were used to investigate trends in Irish 7-day sustained low-flow (7SLF) series possibly driven by changes in summer rainfall patterns. River flow data from 33 gauging stations covering most major Irish rivers were analysed, after excluding catchments where low flows are influenced by significant human interventions. A statistically significant increasing trend in the 7SLF series was identified by all three tests at eight gauging stations; in contrast, a statistically significant decreasing trend was identified by all three tests at four stations. The stations with increasing trends are mainly located within the western half of the country, while there is no particular spatial clustering of the stations showing a decreasing trend. Further analysis suggests that the increasing trend in the 7SLF time series persists regardless of the starting year of analysis. However, the decreasing trend occurs only when years prior to 1970 are included in the analysis, and disappears, or is reversed, if only the data from 1970 and onwards are considered. There is strong evidence that the direction of the trends in the 7SLF series is determined mainly by trends in total summer rainfall amounts, i.e. is linked to weather.

EDITOR Z.W. Kundzewicz

ASSOCIATE EDITOR not assigned  相似文献   

8.
Headwaters contribute a substantial part of the flow in river networks. However, spatial variations of streamflow generation processes in steep headwaters have not been well studied. In this study, we examined the spatio-temporal variation of streamflow generation processes in a steep 2.98-ha headwater catchment. The time when baseflow of the upstream section exceeded that downstream was coincident with the time when the riparian groundwater switched from downwelling to upwelling. This suggests that upwelling of the riparian groundwater increased considerably in the upstream section during the wet period, producing a shift in the relative size of baseflow between the upstream and downstream sections. The timing of fluctuations among hillslope soil moisture, hillslope groundwater and streamflow reveals that the hillslope contributed to storm flow, but this contribution was limited to the wet period. Overall, these results suggest that streamflow generation has strong spatial variations, even in small, steep headwater catchments.

EDITOR A. Castellarin ASSOCIATE EDITOR X. Chen  相似文献   

9.
River temperature models play an increasingly important role in the management of fisheries and aquatic resources. Among river temperature models, forecasting models remain relatively unused compared to water temperature simulation models. However, water temperature forecasting is extremely important for in-season management of fisheries, especially when short-term forecasts (a few days) are required. In this study, forecast and simulation models were applied to the Little Southwest Miramichi River (New Brunswick, Canada), where water temperatures can regularly exceed 25–29°C during summer, necessitating associated fisheries closures. Second- and third-order autoregressive models (AR2, AR3) were calibrated and validated using air temperature as the exogenous variable to predict minimum, mean and maximum daily water temperatures. These models were then used to predict river temperatures in forecast mode (1-, 2- and 3-day forecasts using real-time data) and in simulation mode (using only air temperature as input). The results showed that the models performed better when used to forecast rather than simulate water temperatures. The AR3 model slightly outperformed the AR2 in the forecasting mode, with root mean square errors (RMSE) generally between 0.87°C and 1.58°C. However, in the simulation mode, the AR2 slightly outperformed the AR3 model (1.25°C < RMSE < 1.90°C). One-day forecast models performed the best (RMSE ~ 1°C) and model performance decreased as time lag increased (RMSE close to 1.5°C after 3 days). The study showed that marked improvement in the modelling can be accomplished using forecasting models compared to water temperature simulations, especially for short-term forecasts.

EDITOR M.C. Acreman ASSOCIATE EDITOR S. Huang  相似文献   

10.
The growth of magnetic field is considered in the stretch–fold–shear map in the limit of weak diffusion. Numerical results are given for insulating, perfectly conducting and periodic boundary conditions. The resulting eigenvalue branches and magnetic fields are related to eigenvalue branches for perfect dynamo action, obtained for zero diffusion using a complex variable formulation.

The effect of diffusion on these perfect dynamo modes depends on their structure, growth rate and the diffusive boundary conditions employed. In some cases, the effect of diffusion is a small perturbation, giving a correction going to zero in the limit of weak diffusion, with a scaling exponent given analytically. In other cases weak diffusion can entirely destroy a perfect dynamo branch. Diffusive boundary layers can also generate entirely new branches.

These different cases are elucidated, and within the framework of the asymptotic approximations used (which do not constitute a rigorous proof), it is seen that for all three boundary conditions employed, the stretch–fold–shear map is a fast dynamo.  相似文献   


11.
12.
13.
14.
Abstract

The generation of reliable quantitative precipitation estimations (QPEs) through use of raingauge and radar data is an important issue. This study investigates the impacts of radar QPEs with different densities of raingauge networks on rainfall–runoff processes through a semi-distributed parallel-type linear reservoir rainfall–runoff model. The spatial variation structures of the radar QPE, raingauge QPE and radar-gauge residuals are examined to review the current raingauge network, and a compact raingauge network is identified via the kriging method. An analysis of the large-scale spatial characteristics for use with a hydrological model is applied to investigate the impacts of a raingauge network coupled with radar QPEs on the modelled rainfall–runoff processes. Since the precision in locating the storm centre generally represents how well the large-scale variability is reproduced; the results show not only the contribution of kriging to identify a compact network coupled with radar QPE, but also that spatial characteristics of rainfalls do affect the hydrographs.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Pan, T.-Y., Li, M.-Y., Lin, Y.-J., Chang, T.-J., Lai, J.-S., and Tan, Y.-C., 2014. Sensitivity analysis of the hydrological response of the Gaping River basin to radar-raingauge quantitative precipitation estimates. Hydrological Sciences Journal, 59 (7), 1335–1352. http://dx.doi.org/10.1080/02626667.2014.923969  相似文献   

15.
16.
Climate change and runoff response were assessed for the Tizinafu River basin in the western Kunlun Mountains, China, based on isotope analysis. We examined climate change in the past 50 years using meteorological data from 1957 to 2010. Results of the Mann-Kendall non-parametric technique test indicated that temperature in the entire basin and precipitation in the mountains exhibited significant increasing trends. Climate change also led to significant increasing trends in autumn and winter runoff but not in spring runoff. By using 122 isotope samples, we investigated the variations of isotopes in different water sources and analysed the contributions of different water sources based on isotope hydrograph separation. The results show that meltwater, groundwater and rainfall contribute 17%, 40% and 43% of the annual streamflow, respectively. Isotope analysis was also used to explain the difference in seasonal runoff responses to climate change. As the Tizinafu is a precipitation-dependent river, future climate change in precipitation is a major concern for water resource management.
EDITOR A. Castellarin; ASSOCIATE EDITOR S. Huang  相似文献   

17.
Heyin Chen 《水文科学杂志》2013,58(10):1739-1758
Abstract

Changes in climate and land cover are among the principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic impacts of climate and land-cover changes in the semi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevada, USA. The cell-based model is developed by considering direct runoff based on the Soil Conservation Service - Curve Number (SCS-CN) method and surplus runoff based on the Thornthwaite water balance theory. After calibration and validation, the model is used to predict LVR discharge under future climate and land-cover changes. The hydrologic simulation results reveal climate change as the dominant factor and land-cover change as a secondary factor in regulating future river discharge. The combined effects of climate and land-cover changes will slightly increase river discharge in summer but substantially decrease discharge in winter. This impact on water resources deserves attention in climate change adaptation planning.
Editor Z.W. Kundzewicz  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号