首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A study is made to determine the stability properties of a baroclinic zonal current on which small amplitude three‐dimensional non‐geostrophic disturbances are superimposed. The flow is assumed to be bounded to the north and south by rigid vertical walls and the Rossby number Ro is taken to be small compared to unity. It is then shown that if the perturbation quantities are expanded in power series in Ro the leading or zero order terms in the series correspond to the quasi‐geostrophic solution obtained by Eady (1949) and that the higher order terms represent the “non‐geostrophic” effects neglected by the latter.

It is shown that to the second order in Ro the non‐geostrophic effects decrease the growth rates of those disturbances which are found to be unstable according to Eady's analysis but do not alter their speed of propagation. The results indicate, on the other hand, that to the same order of approximation the stable waves travel at a speed which is different from that given by Eady's solution. The modification of the perturbation wave structure by the non‐geostrophic effects is also investigated. It is found in particular that to the first order in Ro the latter produce a northward tilt with height in the ridge (or trough) lines of the meridional and vertical particle velocity fields away from the lateral boundaries.  相似文献   

2.
Abstract

Geostrophic flow in the theory of a shallow rotating fluid is exactly analogous to the drift approximation in a strongly magnetized electrostatic plasma. This analogy is developed and exhibited in detailed to derive equations for the slow nearly geostrophic motion. The key ingredient in the theory is the isolation, to whatever order in Rossby number desired, of the fast motion near the inertial frequency. One of the remaining degrees of freedom represents a new approximate constant of the motion for nearly geostrophic flow. This is the analogue of the familiar magnetic moment adiabatic invariant in the plasma problem.

The procedure is a Rossby number expansion of the Hamiltonian for the fluid expressed in Lagrangian, rather than Eulerian variables. The fundamental Poisson brackets of the theory are not expanded so desirable properties such as energy conservation are maintained throughout.  相似文献   

3.
Abstract

The stability of a single layer, geostrophic front of zero potential vorticity bounded by a vertical coast (wall) is investigated by means of a Rayleigh integral. It is proved that the flow of the density-driven current is stable at all wavenumbers provided the mean velocity of basic flow exceeds fL (where f is the Coriolis parameter and L is the distance between the wall and the free streamline). The frequency of the stable long waves is either zero or super-inertial.  相似文献   

4.
Abstract

In a recent paper, Buchwald (1972a) has shown that besides the kinetic energy and gravitational potential energy usually associated with planetary waves in an ocean of uniform depth it is useful to define also a “spin energy”, associated with the rotation.

The present paper is basically an extension of Buchwald's result to a uniformly rotating β-plane ocean of variable depth. As in the previous work, energy conservation equations are derived and the separate energies shown to be independently conserved over the total volume of the ocean. The time-averaged energies are further shown to be propagated in the direction of the group velocity and to satisfy the equipartition rule.

Unlike Buchwald, however, we need not consider the boundary conditions in order to achieve these results. Furthermore, the use of a more realistic ocean configuration admits the possibility of a multiply connected region in the present of mean currents.

Finally, there is a physical explanation for the appearance of a spin energy in a rotating system.  相似文献   

5.
Summary Mean values of the angle of inclination between the mean vector surface wind and the mean isobars have been calculated as a function of latitude for a number of independent Marsden squares over the ocean. Mean values of the ratio between the mean vector surface wind velocity and the calculated geostrophic wind velocity have been computed in the same way. Some general inferences about the general circulation have been drawn from the results.  相似文献   

6.
According to the features of spatial spectrum of the dynamic ocean topography (DOT),wavelet filter is proposed to reduce short-wavelength and noise signals in DOT. The surface geostrophic currents calculated from the DOT models filtered by wavelet filter in global and Kuroshio regions show more detailed information than those from the DOT models filtered by Gaussian filter. Based on a satellite gravity field model (CG01C) and a gravity field model (EGM96),combining an altimetry-derived mean sea surface height model (KMSS04),two mean DOT models are estimated. The short-wavelength and noise signals of these two DOT models are removed by using wavelet filter,and the DOT models asso-ciated global mean surface geostrophic current fields are calculated separately. Comparison of the surface geostrophic currents from CG01C and EGM96 model in global,Kuroshio and equatorial Pacific regions with that from oceanography,and comparison of influences of the two gravity models errors on the precision of the surface geostrophic currents velocity show that the accuracy of CG01C model has been greatly improved over pre-existing models at long wavelengths. At large and middle scale,the surface geostrophic current from satellite gravity and satellite altimetry agrees well with that from oceanography,which indicates that ocean currents detected by satellite measurement have reached relatively high precision.  相似文献   

7.

The time‐dependent meandering in a thin baroclinic jet over bottom topography is discussed in the quasi‐geostrophic approximation. The motion of the axis of the jet is taken to be vertically coherent and the axis itself is defined as inextensible. The motion is examined from a frame of reference moving with the axis but fixed at an arbitrary longitude in terms of an open ocean spatial initial value problem. The velocities of the axis and of the jet are quasi‐geostrophic, and vorticity conservation for the first non‐geostrophic components constrains the evolution of the axis and gives a path equation. The spatial linearized stability problem is studied and the jet is found to be baroclinically unstable to path disturbances of sufficiently high frequency which amplify downstream. An exact solution is obtained to the nonlinear path equation over a flat bottom with no ß‐effect. The evolution of the path of these unstable meanders is such that the path closes itself and forms rings (at which point the analysis breaks down). It is proposed that the baroclinic jet processes studied here are fundamental to the dynamics of Gulf Stream meandering and isolated eddy production.  相似文献   

8.
Abstract

A system is considered in which electrically conducting fluid is contained between two rigid horizontal planes and bounded laterally by a circular cylinder. The fluid is permeated by a strong azimuthal magnetic field. The strength of the field increases linearly with distance from the vertical axis of the cylinder, about which the entire system rotates rapidly. An unstable temperature gradient is maintained by heating the fluid from below and cooling from above. When viscosity and inertia are neglected, an arbitrary geostrophic velocity, which is aligned with the applied azimuthal magnetic field and independent of the axial coordinate, can be superimposed on the basic axisymmetric state. In this inviscid limit, the geostrophic velocity which occurs at the onset of convection is such that the net torque on geostrophic cylinders vanishes (Taylor's condition). The mathematical problem which describes the ensuing marginal convection is nonlinear, and was discussed previously for the planar case by Soward (1986). Here new features are isolated which result from the cylindrical geometry. New asymptotic solutions are derived valid when Taylor's condition is relaxed to include viscous effects.  相似文献   

9.
Sergey Danilov 《Ocean Dynamics》2010,60(6):1361-1369
Ocean circulation models based on triangular C-grid discretization are frequently employed to simulate coastal ocean dynamics on unstructured meshes. It is shown that on time and space scales dominated by slow geostrophic dynamics, this discretization tends to exhibit checkerboard noise in the field of horizontal velocity divergence and vertical velocity, respectively. The noise is linked to the geometry of triangular C-grid and is amplified in regimes that are close to geostrophic balance through the particular structure of the Coriolis operator. It can be partly suppressed in some cases but remains a problem in a general case and makes the triangular C-grid a suboptimal choice for large-scale ocean modeling.  相似文献   

10.
Ocean surface fronts and filaments have a strong impact on the global ocean circulation and biogeochemistry. Surface Lagrangian advection with time-evolving altimetric geostrophic velocities can be used to simulate the submesoscale front and filament structures in large-scale tracer fields. We study this technique in the Southern Ocean region south of Tasmania, a domain marked by strong meso- to submesoscale features such as the fronts of the Antarctic Circumpolar Current (ACC). Starting with large-scale surface tracer fields that we stir with altimetric velocities, we determine ‘advected’ fields which compare well with high-resolution in situ or satellite tracer data. We find that fine scales are best represented in a statistical sense after an optimal advection time of ~2 weeks, with enhanced signatures of the ACC fronts and better spectral energy. The technique works best in moderate to high EKE regions where lateral advection dominates. This technique may be used to infer the distribution of unresolved small scales in any physical or biogeochemical surface tracer that is dominated by lateral advection. Submesoscale dynamics also impact the subsurface of the ocean, and the Lagrangian advection at depth shows promising results. Finally, we show that climatological tracer fields computed from the advected large-scale fields display improved fine-scale mean features, such as the ACC fronts, which can be useful in the context of ocean modelling.  相似文献   

11.
Abstract

An attractive explanation for the observed spatial growth of the Gulf Stream meanders is that the meanders are spatially growing unstable waves. The results of a calculation based on a simple two-layer model of baroclinically unstable flow presented here support this idea. The model is a familiar one with the energy for the growth of the meander perturbations coming from the potential energy available in the geostrophic tilt of the interface between the two layers due to their velocity shear. In order to distinguish between spatial and temporal growth, it IS necessary to assume that the meanders are generated in a localized region, or equivalently, that the meanders are upstream disturbances which are amplified as they enter a region of unstable flow. This assumption is implemented mathematically through the use of a Green's function which governs the propagation of the meanders. Analysis of the spatial and temporal characteristics of the Green's function leads to a criterion which must he satisfied if the meanders arc to grow spatially. This criterion is that the mean flow velocity must be sufficiently greater than the velocity shear, Um > √2 Us, in order to have spatial growth. This simply means that the growing meanders must be washed downstream faster than they spread upstream, or equivalently the spatial growth is due to downstream advection of growing disturbances. The actual Gulf Stream flow is in fair agreement with this criterion.  相似文献   

12.
基于卫星测高交叉点的海洋表面地转流速度   总被引:3,自引:1,他引:2       下载免费PDF全文
在流体静力平衡状态下,海洋Coriolis力和压力梯度平衡就形成地转流,世界上大多数海流都近似为地转流.本文利用卫星测高交叉点方法计算海洋表面地转流速度,分析了利用测高交叉点计算地转流速度的不确定性,上升和下降弧段的海面倾斜在分辨率50 km上可以达到10-7量级,才可能获得优于10 cm/s的地转流速度.在低纬度或者纬度接近卫星轨道倾角的地区,由交叉点方法计算的地转流速度精度低于中纬度地区.以中国台湾东部黑潮为试验区,利用最新的中国台湾周边海域大地水准面模型参考场计算高精度的大地水准面高,利用TOPEX/Poseidon和Jason-1的GDR数据(2002~2005年)计算海面高,然后计算交叉点的动力高,确定交叉点的地转流速度,结果与中国台湾NCOR(National Center for Ocean Research)的流速基本一致.  相似文献   

13.
Abstract

This paper presents an analytical, two-dimensional model of the wind-induced homogeneous circulation near the edge of an ice pack floating on the ocean surface. It is shown that a vertical shear layer arises under the ice edge, by which the wind-driven geostrophic motion in the open ocean is matched to the flow region underneath the ice. As in coastal upwelling models, this shear layer consists of a thin E 1/2-layer inside a thicker E 1/4-layer (E being the Ekman number). Under certain conditions the shear layer produces a vertical mass flux from the bottom to the surface Ekman layer. Near the surface this upwelling flux is concentrated in the narrow E 1/2-layer. Comparison with observations of upwelling at the edge of a polar ice pack shows good agreement.  相似文献   

14.
Abstract

The adjustment of a nonlinear, quasigeostrophic, stratified ocean to an impulsively applied wind stress is investigated under the assumption that barotropic advection of vortex tube length is the most important nonlinearity. The present study complements the steady state theories which have recently appeared, and extends earlier, dissipationless, linear models.

In terms of Sverdrup transport, the equation for baroclinic evolution is a forced advection-diffusion equation. Solutions of this equation subject to a “tilted disk” Ekman divergence are obtained analytically for the case of no diffusion and numerically otherwise. The similarity between the present equation and that of a forced barotropic fluid with bottom topography is shown.

Barotropic flow, which is assumed to mature instantly, can reverse the tendency for westward propagation, and thus produce regions of closed geostrophic contours. Inside these regions, dissipation, or equivalently the eddy field, plays a central role. We assume that eddy mixing effects a lateral, down-gradient diffusion of potential vorticity; hence, within the closed geostrophic contours, our model approaches a state of uniform potential vorticity. The solutions also extend the steady-state theories, which require weak diffusion, by demonstrating that homogenization occurs for moderately strong diffusion.

The evoiution of potential vorticity and the thermocline are examined, and it is shown that the adjustment time of the model is governed by dissipation, rather than baroclinic wave propagation as in linear theories. If dissipation is weak, spin-up of a nonlinear ocean may take several times that predicted by linear models, which agrees with analyses of eddy-resolving general circulation models. The inclusion of a western boundary current may accelerate this process, although dissipation will still play a central role.  相似文献   

15.
The interaction between two important mechanisms which causes streaming has been investigated by numerical simulations of the seabed boundary layer beneath both sinusoidal waves and Stokes second order waves, as well as horizontally uniform bottom boundary layers with asymmetric forcing. These two mechanisms are streaming caused by turbulence asymmetry in successive wave half-cycles (beneath asymmetric forcing), and streaming caused by the presence of a vertical wave velocity within the seabed boundary layer as earlier explained by Longuet-Higgins. The effect of wave asymmetry, wave length to water depth ratio, and bottom roughness have been investigated for realistic physical situations. The streaming induced sediment dynamics near the ocean bottom has been investigated; both the resulting suspended load and bedload are presented. Finally, the mass transport (wave-averaged Lagrangian velocity) has been studied for a range of wave conditions. The streaming velocities beneath sinusoidal waves (Longuet-Higgins streaming) is always in the direction of wave propagation, while the streaming velocities in horizontally uniform boundary layers with asymmetric forcing are always negative. Thus the effect of asymmetry in second order Stokes waves is either to reduce the streaming velocity in the direction of wave propagation, or, for long waves relative to the water depth, to induce a streaming velocity against the direction of wave propagation. It appears that the Longuet-Higgins streaming decreases as the wave length increases for a given water depth, and the effect of wave asymmetry can dominate, leading to a steady streaming against the wave propagation. Furthermore, the asymmetry of second order Stokes waves reduces the mass transport (wave-averaged Lagrangian velocity) as compared with sinusoidal waves. The boundary layer streaming leads to a wave-averaged transport of suspended sediments and bedload in the direction of wave propagation.  相似文献   

16.
17.
Abstract

The instability of a current with a geostrophic surface density front is investigated by means of a reduced gravity model having a velocity profile with nearly uniform potential vorticity. It is shown that currents are unstable when the mean potential vorticity decreases toward the surface front at the critical point of the frontal trapped waves investigated by Paldor (1983). This instability is identical with that demonstrated by Killworth (1983) in the longwave limit.

The cross-stream component of mass flux and the rates of energy conversions among the five energy forms defined by Orlanski (1968) are also calculated. The main results are as follows, (a) The mass flux toward the surface front is positive near the front and negative around the critical point. The positive mass flux near the front does not vanish at the position of the undisturbed surface front, so that the mean position of the front moves outward and the region of the strong current spreads. (b) The potential energy of the mean flow integrated over the fluid is released through the work done by the force of the pressure gradient of the mean flow on the fluid, and is converted into the kinetic energy of the mean flow. (c) In the critical layer, the mean flow is rapidly accelerated with the growth of the unstable wave. This acceleration is caused by the rapid phase shift of the unstable wave in the critical layer.  相似文献   

18.
Abstract

An inviscid, electrically conducting fluid is contained between two rigid horizontal planes and bounded laterally by two vertical walls. The fluid is permeated by a strong uniform horizontal magnetic field aligned with the side wall boundaries and the entire system rotates rapidly about a vertical axis. The ratio of the magnitudes of the Lorentz and Coriolis forces is characterized by the Elsasser number, A, and the ratio of the thermal and magnetic diffusivities, q. By heating the fluid from below and cooling from above the system becomes unstable to small perturbations when the adverse density gradient as measured by the Rayleigh number, R, is sufficiently large.

With the viscosity ignored the geostrophic velocity, U, which is aligned with the applied magnetic field, is independent of the coordinate parallel to the rotation axis but is an arbitrary function of the horizontal cross-stream coordinate. At the onset of instability the value of U taken ensures that Taylor's condition is met. Specifically the Lorentz force, which results from marginal convection must not cause any acceleration of the geostrophic flow. It is found that the critical Rayleigh number characterising the onset of instability is generally close to the corresponding value for the usual linear problem, in which Taylor's condition is ignored and U is chosen to vanish. Significant differences can occur when q is small owing to a complicated flow structure. There is a central interior region in which the local magnetic Reynolds number, Rm , based on U is small of order q and on exterior region in which Rm is of order unity.  相似文献   

19.
基于区域滤波的GOCE稳态海面动力地形和地转流   总被引:1,自引:0,他引:1       下载免费PDF全文
基于频域法,利用最新的GOCE卫星重力场模型和卫星测高数据计算了稳态海面动力地形.结合海洋表层漂流浮标的观测结果,对稳态海面动力地形进行了最优空间滤波尺度分析,给出了区域、纬度带和全球稳态海面动力地形的最优空间滤波尺度因子.在此基础上,给出了全球和区域地转流.结果表明:在中高纬度和全球区域,可以分别获得空间尺度优于102km和127km的稳态海面动力地形信息.与海洋表层漂流浮标对比可知,在强流区域,采用稳态海面动力地形得到的地转流速可以解释观测浮标流速的70%;在中高纬度区域,由GOCE重力场得到的地转流略优于对应的GRACE结果;在近赤道区域,由GOCE重力场得到的地转流精度略低于对应的GRACE结果;在北大西洋和阿古拉斯强流区域,由GOCE得到的地转流场明显优于对应的GRACE结果,其精度分别提高了16%和24%.  相似文献   

20.
In the framework of the eddy dynamic model developed in two previous papers (Dubovikov, M.S., Dynamical model of mesoscale eddies, Geophys. Astophys. Fluid Dyn., 2003, 97, 311–358; Canuto, V.M. and Dubovikov, M.S., Modeling mesoscale eddies, Ocean Modelling, 2004, 8, 1–30 referred as I–II), we compute the contribution of unresolved mesoscale eddies to the large-scale dynamic equations of the ocean. In isopycnal coordinates, in addition to the bolus velocity discussed in I–II, the mesoscale contribution to the large scale momentum equation is derived. Its form is quite different from the traditional down-gradient parameterization. The model solutions in isopycnal coordinates are transformed to level coordinates to parameterize the eddy contributions to the corresponding large scale density and momentum equations. In the former, the contributions due to the eddy induced velocity and to the residual density flux across mean isopycnals (so called Σ-term) are derived, both contributions being shown to be of the same order. As for the large scale momentum equation, as well as in isopycnal coordinates, the eddy contribution has a form which is quite different from the down-gradient expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号