首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We look at the large-scale dynamo properties of spatially periodic, time dependent, helical 2D flows of the form u(x, t)?=?(? y ?ψ?(x, y, t), ?? x ?ψ?(x, y, t), ?ψ (x, y, t). These flows act as kinematic fast dynamos and are able to generate a mean magnetic field uniform and constant in the xy-plane but whose direction varies periodically along z with wavenumber k. Using Mean Field Electrodynamics, the generation mechanism can be understood in terms of a k-dependent α-effect, which depends on the magnetic Reynolds number, R m . We calculate this effect for different motions and investigate how its limit as k?→?0 depends on R m and on the properties of the flows such as their spatial structure or correlation time. This work generalises earlier studies based on 2D steady flows to motions with time dependence.  相似文献   

2.
Average steady source flow in heterogeneous porous formations is modelled by regarding the hydraulic conductivity K(x) as a stationary random space function (RSF). As a consequence, the flow variables become RSFs as well, and we are interested into calculating their moments. This problem has been intensively studied in the case of a Neumann type boundary condition at the source. However, there are many applications (such as well-type flows) for which the required boundary condition is that of Dirichlet. In order to fulfill such a requirement the strength of the source must be proportional to K(x), and therefore the source itself results a RSF. To solve flows driven by sources whose strength is spatially variable, we have used a perturbation procedure similar to that developed by Indelman and Abramovich (Water Resour Res 30:3385–3393, 1994) to analyze flows generated by sources of deterministic strength. Due to the linearity of the mathematical problem, we have focused on the explicit derivation of the mean head distribution G d (x) generated by a unit pulse. Such a distribution represents the fundamental solution to the average flow equations, and it is termed as mean Green function. The function G d (x) is derived here at the second order of approximation in the variance σ2 of the fluctuation (where K A is the mean value of K(x)), for arbitrary correlation function ρ(x), and any dimensionality d of the flow domain. We represent G d (x) as product between the homogeneous Green function G d (0)(x) valid in a domain with constant K A , and a distortion term Ψ d (x) = 1 + σ2ψ d (x) which modifies G d (0)(x) to account for the medium heterogeneity. In the case of isotropic formations ψ d (x) is expressed via one quadrature. This quadrature can be analytically calculated after adopting specific (e.g.. exponential and Gaussian) shape for ρ(x). These general results are subsequently used to investigate flow toward a partially-penetrating well in a semi-infinite domain. Indeed, we construct a σ2-order approximation to the mean as well as variance of the head by replacing the well with a singular segment. It is shown how the well-length combined with the medium heterogeneity affects the head distribution. We have introduced the concept of equivalent conductivity K eq(r,z). The main result is the relationship where the characteristic function ψ(w)(r,z) adjusts the homogeneous conductivity K A to account for the impact of the heterogeneity. In this way, a procedure can be developed to identify the aquifer hydraulic properties by means of field-scale head measurements. Finally, in the case of a fully penetrating well we have expressed the equivalent conductivity in analytical form, and we have shown that (being the effective conductivity for mean uniform flow), in agreement with the numerical simulations of Firmani et al. (Water Resour Res 42:W03422, 2006).  相似文献   

3.
Abstract

The normal mode instability of harmonic waves in an ideal incompressible fluid on a rotating sphere is analytically studied. By the harmonic wave is meant a Legendrepolynomial flow αPn(μ) (n ≥ 1) and steady Rossby-Haurwitz wave of set F 1 ⊕ Hn where Hn is the subspace of homogeneous spherical polynomials of the degree n(n ≥ 2), and F 1 is the one-dimensional subspace generated by the Legendre-polynomial P1(μ). A necessary condition for the normal mode instability of the harmonic wave is obtained. By this condition, Fjörtoft's (1953) average spectral number of the amplitude of each unstable mode must be equal to . It is noted that flow αPn (μ) is Liapunov (and hence, exponentially and algebraically) stable to all the disturbances whose zonal wavenumber m satisfies condition |m| ≥ n. The bounds of the growth rate of unstable normal modes are estimated as well. It is also shown that the amplitude of each unstable, decaying or non-stationary mode is orthogonal to the harmonic wave.

The new instability condition can be useful in the search of unstable perturbations to a harmonic wave and on trials of numerical stability study algorithms. For a Legendre-polynomial flow, it complements Kuo's (1949) condition in the sense that while the latter is related to the basic flow structure; the former characterizes the structure of a growing perturbation.  相似文献   

4.
为了研究抚仙湖紫外辐射(UVR)和光合有效辐射(PAR)衰减的时空特征及其与有色可溶性有机物(CDOM)、悬浮物(SS)、浮游植物(叶绿素a表征)等因子的关系,于2014年10月(秋季)、2015年1月(冬季)开展现场调查,结果显示:秋季不同波长(段)的漫射衰减系数Kd(305)、Kd(340)和Kd(PAR)分别为1.27±0.12、0.68±0.11和0.32±0.13 m-1,冬季分别为1.13±0.10、0.63±0.07和0.36±0.07 m-1;秋季CDOM的不同波长吸收系数ag(254)、ag(305)和ag(340)分别为4.09±0.26、1.18±0.09和0.57±0.05 m-1,冬季分别为2.95±0.24、0.61±0.11和0.11±0.07 m-1,秋季ag(254)、ag(305)和ag(340)显著高于冬季;秋季Kd(305)显著大于冬季,这与秋季(雨季)较高的CDOM丰度、浮游植物生物量(及SS浓度)有关.秋季ag(305)/Kd(305)、ag(340)/Kd(340)均显著高于冬季;秋季及秋冬季整体而言,ag(254)与Kd(305)、Kd(340)呈显著正相关,各多元逐步回归方程中均包含ag(254),说明CDOM吸收对UVR的衰减有重要贡献.空间差异方面,秋季北部的ag(254)、Kd(305)和Kd(340)显著高于南部,冬季南北部无明显差异,或与雨旱季北岸河流输入的CDOM和SS的情况有关.此外,浮游植物对UV-B衰减的影响和SS(与CDOM的交互作用)对UV-A衰减的影响更在于季节变化方面,而影响UVR、PAR衰减的各因子的相对贡献有待进一步量化.  相似文献   

5.
Abstract

We consider the growth of disturbances to large-scale zonally-asymmetric steady states in a truncated spectral model for forced and dissipated barotropic flow. A variant of the energy method is developed to optimize the instantaneous disturbance energy growth rate. The method involves solving a matrix eigenvalue problem amenable to standard numerical techniques. Two applications are discussed. (1) The global stability of a family of steady states is assessed in terms of the Ekman damping coefficient r. It is shown that monotonic global stability (i.e., every disturbances energy monotonically decays to zero) prevails when rrc . (2) Initially fastest-growing disturbances are constructed in the r<rc regime. Particular attention is paid to a subregion of the r<rc regime where initially-growing disturbances exist despite stability with respect to normal modes. Nonlinear time-dependent simulations are performed in order to appraise the time evolution of various disturbances.  相似文献   

6.
Abstract

Steady currents develop in oceanic turbulence above topography even in the absence of steady forcing. Mesoscale steady currents are correlated with mesoscale topography with anticyclonic eddies above topographic bumps, and large scale westward flows develop when β is non-zero. The relationship between those two kinds of steady currents, as well as their dependence on various parameters, is studied using a barotropic quasi-geostrophic channel model. The percentage of steady energy is found to depend on the forcing, friction and topography in a non-monotonic fashion. For example, the percentage of steady currents grows with the energy level in the linear regime (low energies) and decreases when the energy level increases in the nonlinear regime (high energies). Mesoscale steady currents are the energy source for the steady westward flow U, and therefore U is the maximum when large scale and mesoscale currents are of the same order of magnitude. This happens when the ratio S of the large scale slope βH/f 0 and the mesoscale rms topographic slope α is of order one. U decreases for both small and large values of S.  相似文献   

7.
Summary Effects of mechanical shocks of about 0.5 msec in duration on the remanent magnetization of igneous rocks are experimentally studied. The remanent magnetization acquired by applying a shock (S) in the presence of a magnetic field (H), which is symbolically expressed asJ R (H+S Ho), is very large compared with the ordinary isothermal remanent magnetization (IRM) acquired in the same magnetic field.J R (H+S Ho) is proportional to the piezo-remanent magnetization,J R (H+P+Po Ho).The effect of applyingS in advance of an acquisition of IRM is represented symbolically byJ R (S H+ Ho).J R (S H+ Ho) can become much larger than the ordinary IRM, and is proportional to the advance effect of pressure on IRM,J R(P+ P0 H+ H0).The effect of shockS applied on IRM in non-magnetic space is represented by the shock-demagnetization effect,J R(H+ H0 S), which also is proportional toJ R(H+ H0 P+ P0).Because, the duration of a shock is very short, a single shock effect cannot achieve the final steady state. The effect ofn-time repeated shocks, is represented byJ 0+J *(n), whereJ 0 means the immediate effect and J *(n) represent the resultant effect of repeating, which is of mathematical expression proportional to [1–exp {–(n–1)}].
Zusammenfassung Die Effekte des mechanischen Stosses mit der Dauer von etwa 0.5 ms auf der remanenten Magnetisierung wurden experimentell nachgesucht. Das erworbene Remanenz der Magnetisierung nach dem Stoss (S) unter dem magnetischen Feld (H), das hier symbolisch alsJ R(H+ SH0) bezechnet wird, ist sehr stark im Vergleich mit der normalen isothermischen remanenten Magnetisierung (IRM) unter demselben magnetischen Feld.J R(H+ S H0) ist im Verhältnis zur piezoremanenten Magnetisierung,J R(H+ P+ P0 H0).Der Effekt vom Stoss vor der Erwerbung von IRM wird symbolisch alsJ R(S H+ H0) bezeichnet.J R(S H+ H0) kann viel stärker als die normale IRM werden, im verhältnis zum Effekt des vorausgegebenen Drucks auf IRMJ R(P+ P0 H+ H0).Der Effekt des Stosses auf IRM im Raum ohne magnetisches Feld wird mit dem Stossentmagnetisierungseffekt dargestellt,J R(H+ H0 S), der auch proportional zuJ R(H+ H0 P+ P0) ist.Da die Dauer einzelnen Stosses sehr kurz ist, kann der Effekt des einmaligen Stosses den endgültigen stabilen Zustand nicht erreichen. Der Effekt nachn-maligen wiederholten Stossen wird alsJ 0+J *(n) bezeichnet, wobeiJ 0 den unverzüglichen Effekt bedeutet, und J *(n) beschreibt den resultanten Effekt der Stosswiederholung, dessen mathematische Darstellung proporational zu [1–exp {–(n–1)}] ist.
  相似文献   

8.
Abstract

Bayly (1993) introduced and investigated the equation (? t + ▽-η ▽2)S = RS as a scalar analogue of the magnetic induction equation. Here, S(r, t) is a scalar function and the flow field v(r, t) and “stretching” function R(r, t) are given independently. This equation is much easier to handle than the corresponding vector equation and, although not of much relevance to the (vector) kinematic dynamo problem, it helps to study some features of the fast dynamo problem. In this note the scalar equation is considered for linear flow and a harmonic potential as stretching function. The steady equation separates into one-dimensional equations, which can be completely solved and therefore allow one to monitor the behaviour of the spectrum in the limit of vanishing diffusivity. For more general homogeneous flows a scaling argument is given which ensures fast dynamo action for certain powers of the harmonic potential. Our results stress the singular behaviour of eigenfunctions in the limit of vanishing diffusivity and the importance of stagnation points in the flow for fast dynamo action.  相似文献   

9.
Abstract

The linear stability of a non-divergent barotropic parallel shear flow in a zonal and a non-zonal channel on the β plane was examined numerically. When the channel is non-zonal, the governing equation is slightly modified from the Orr-Sommerfeld equation. Numerical solutions were obtained by solving the discretized linear perturbation equation as an eigenvalue problem of a matrix. When the channel is zonal and lateral viscosity is neglected the problem is reduced to the ordinary barotropic instability problem described by Kuo's (1949) equation. The discrepancy between the stability properties of westward and eastward flows, which have been indicated by earlier studies, was reconfirmed. It has also been suggested that the unstable modes are closely related to the continuous modes discretized by a finite differential approximation. When the channel is non-zonal, the properties of unstable modes were quite different from those of the zonal problem in that: (1) The phase speed of the unstable modes can exceed the maximum value of the basic flow speed; (2) The unstable modes are not accompanied by their conjugate mode; and (3) The basic flow without an inflection point can be unstable. The dispersion relation and the spatial structure of the unstable modes suggested that, irrespective of the orientation of the channel, they have close relation to the neutral modes (Rossby channel modes) which are the solutions in the absence of a basic shear flow. The features mentioned above are not dependent on whether or not the flow velocity at the boundary is zero.  相似文献   

10.

Oceanic mesoscale eddies which are analogs of well known synoptic eddies (cyclones and anticyclones), are studied on the basis of the turbulence model originated by Dubovikov (Dubovikov, M.S., "Dynamical model of turbulent eddies", Int. J. Mod. Phys. B7, 4631-4645 (1993).) and further developed by Canuto and Dubovikov (Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: I. General formalism", Phys. Fluids 8, 571-586 (1996a) (CD96a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: II. Sheardriven flows", Phys. Fluids 8, 587-598 (1996b) (CD96b); Canuto, V.M., Dubovikov, M.S., Cheng, Y. and Dienstfrey, A., "A dynamical model for turbulence: III. Numerical results", Phys. Fluids 8, 599-613 (1996c)(CD96c); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "A dynamical model for turbulence: IV. Buoyancy-driven flows", Phys. Fluids 9, 2118-2131 (1997a) (CD97a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: V. The effect of rotation", Phys. Fluids 9, 2132-2140 (1997b) (CD97b); Canuto, V.M., Dubovikov, M.S. and Wielaard, D.J., "A dynamical model for turbulence: VI. Two dimensional turbulence", Phys. Fluids 9, 2141-2147 (1997c) (CD97c); Canuto, V.M. and Dubovikov, M.S., "Physical regimes and dimensional structure of rotating turbulence", Phys. Rev. Lett. 78, 666-669 (1997d) (CD97d); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "Turbulent convection in a spectral model", Phys. Rev. Lett. 78, 662-665 (1997e) (CD97e); Canuto, V.M. and Dubovikov, M.S., "A new approach to turbulence", Int. J. Mod. Phys. 12, 3121-3152 (1997f) (CD97f); Canuto, V.M. and Dubovikov, M.S., "Two scaling regimes for rotating Raleigh-Benard convection", Phys. Rev. Letters 78, 281-284, (1998) (CD98); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: VII. The five invariants for shear driven flows", Phys. Fluids 11, 659-664 (1999a) (CD99a); Canuto, V.M., Dubovikov, M.S. and Yu, G., "A dynamical model for turbulence: VIII. IR and UV Reynolds stress spectra for shear driven flows", Phys. Fluids 11, 656-677 (1999b) (CD99b); Canuto, V.M., Dubovikov, M.S. and Yu, G., "A dynamical model for turbulence: IX. The Reynolds stress for shear driven flows", Phys. Fluids 11, 678-694 (1999c) (CD99c).). The CD model derives from general principles and does not resort to any free parameters. Yet, it successfully describes a wide variety of quite different turbulent flows. In the present work we apply CD model to the compressible ocean. The model yields mesoscale eddies generated by the baroclinic instability. The latter, in turn, arises from the nonhorizontal orientation of the surfaces of the constant potential density (isopycnals). The obtained dynamic equations for eddy fields reduce to a vertical eigen value problem, an eigen value real part yielding an eddy radius, while an imaginary part - an eddy drift velocity. The size of the eddy is about 3rd (where rd is the Rossby deformation radius). The eddy dynamics has the following distinctive features: (1) the large scale potential energy feeds the eddy potential energy (EPE) at scales ~ rd , (2) from rd EPE cascades to the smaller scales down to ~ l 1 determined from the condition that the spectral Rossby number Ro(q) ≡ qU'(q)f?1 becomes ~ 1 (q is two-dimensional wave number within an isopycnal surface), (3) at scales ~ l 1 EPE transforms into eddy kinetic energy (EKE) which cascades backwards to the larger scales up to ~ rd , where it transforms back into EPE, thereby closing the energy flux circulation in a wavenumber space, (4) dissipation of the eddy energy (EE) occurs at scales ~ l 1 since at those scales the fluctuating component of the vertical shear is maximal and equals to the Brunt-Vaisala frequency. The latter equality is the well known condition for generating the vertical turbulence which dissipates EE. The model enables to determine all turbulence characteristics, including the horizontal (isopycnal) diffusivity κ h in terms of the large scale mean fields. From the typical values of the latter follow estimates for the parameters of an eddy which agree well with the observational and simulational data: kh ~ 103m2s?1, EKE K ~ 103m2s?1, rd ~ 3 × 104m, lI ~ 10. In what concerns the bolus velocity, it contains additional terms (as compared to the model of Gent and McWilliams (Gent, P.R. and McWilliams, J.C., "Isopycnal mixing in ocean circulation models", J. Phys. Oceanogr. 20, 150-155 (1990)) which result from the eddy fields advection by a mean velocity ū. Since the latter varies with depth, it is inevitable to differ from the eddy drift velocity that produces a shearing force eroding the eddy coherent structures and, therefore, contributing negatively to EE production. This is in contrast with the positive contribution from the GM term (which is due to the baroclinic instability). In those regions where the disruptive action is stronger, there is no eddy generation.  相似文献   

11.
青藏高原地区分布的湖泊数量众多、面积较大、分布范围广泛.受制于恶劣的自然条件,对该地区湖泊的光学吸收特性以及光合有效辐射衰减系数(Kd(PAR))的研究鲜有成果.本文依据2014和2015年间采集的13个典型高海拔、湖泊面积较大的湖库的现场实测数据和实验室测定数据,分析了采样湖库各个采样点的Kd(PAR)特征以及有色可溶性有机物(CDOM)、藻类颗粒物吸收及非色素颗粒物吸收特性,计算并分析了Kd(PAR)与透明度以及光学活性物质的关系.研究结果表明:青藏高原地区各湖库平均各项颗粒物吸收系数均较低,总颗粒物吸收系数在400~700 nm波段内不超过0.14 m~(-1)、CDOM吸收系数在355 nm波长处最高,为1.23 m~(-1)、最低接近于0、藻类颗粒物吸收特性不明显;实验数据完整的巴木错、格仁错和班公错的主导吸收组分各异,其中巴木错为CDOM吸收主导,格仁错与班公错为非色素颗粒物吸收主导;青藏高原采样湖泊总体Kd(PAR)平均值较小,仅为0.26 m~(-1),样点最大值出现在可鲁克湖(1.17 m~(-1)),最小值出现在普莫雍错(0.10 m~(-1));在采样湖泊中Kd(PAR)与透明度呈显著相关;Kd(PAR)与CDOM的相关性最强,叶绿素a浓度次之,与总悬浮颗粒物浓度的相关性最不显著.  相似文献   

12.
In this paper we suggest that conditional estimator/predictor of rockburst probability (and rockburst hazard, P T (t)) can be approximated with the formula P T (t) = P 1(θ 1)…P N (θ N P dyn T (t), where P dyn T (t) is a time-dependent probability of rockburst given only the predicted seismic energy parameters, while P i (θ i ) are amplifying coefficients due to local geologic and mining conditions, as defined by the Expert Method of (rockburst) Hazard Evaluation (MRG) known in the Polish mining industry. All the elements of the formula are (approximately) calculable (on-line) and the resulting P T value satisfies inequalities 0 ≤ P T (t) ≤ 1. As a result, the hazard space (0–1) can be always divided into smaller subspaces (e.g., 0–10−5, 10−5–10−4, 10−4–10−3, 10−3–1), possibly named with symbols (e.g., A, B, C, D, …) called “hazard states” — which saves the prediction users from worrying of probabilities. The estimator P T can be interpreted as a formal statement of (reformulated) Comprehensive Method of Rockburst State of Hazard Evaluation, well known in Polish mining industry. The estimator P T is natural, logically consistent and physically interpretable. Due to full formalization, it can be easily generalized, incorporating relevant information from other sources/methods.  相似文献   

13.
Abstract

Remote sensing technology is being conceived as a cost-effective tool to monitor the eutrophication problem in shallow inland lakes and reservoirs. The objective of this study is to develop hyperspectral remote sensing algorithms for chlorophyll and accessory pigments retrieval in the Ishizuchi Reservoir in Japan. The laboratory reflectance data of 207 field samples with manipulated pigment and suspended sediment concentrations were measured between 400 and 700 nm with a hyperspectral spectroradiometer, and integrated into 60 contiguous narrow bands. Band ratio and spectral absorption algorithms were developed by regression analysis with the observed chlorophyll measurements, and their estimation accuracies were evaluated using the RMSE of the estimates. Algorithms developed from spectral absorption ratios a(675 nm)/a*(675 nm) for five different classes of total pigment concentrations were more accurate than the algorithms based on band ratios Rrs (538 nm)/Rrs (488 nm), Rrs (581 nm)/Rrs (463 nm) and Rrs (674 nm)/Rrs (622 nm) as a result of removing the influence of overlapping absorption and scattering by water molecules and suspended solids from total absorption spectra.  相似文献   

14.
Abstract

An analysis is presented of the propagation of barotropic non-divergent oscillations along the western side of an ocean basin along which the persistent circulation in the basin is strongly intensified and laterally sheared. Because the Rossby number of a western boundary current is near unity, the properties of these waves are strongly affected by the steady circulation pattern. It is shown that for relatively long wavelengths, these waves can travel along the shelf in both directions; however, for a small range of short wavelengths they can only propagate northward and are unstable. Along the southeastern coast of North America, the unstable waves have wavelengths of order 150 km and periods of order 10 days. However, these waves can become stable oscillations in the deeper water northeast of Cape Hatteras. These oscillations are a possible explanation of the initiation of Gulf Stream meanders along the continental rise.  相似文献   

15.
Abstract

We discuss the propagation of internal waves in a rotating stratified unbounded fluid with randomly varying stability frequency, N. The first order smoothing approximation is used to derive the dispersion relation for the mean wave field when N is of the form N 2 = N o 2(1 + ?μ), where μ is a centered stationary random function of either depth (z) or time (t), N o = constant and O < ?2 ≦ 1. Expressions are then derived for the change in phase speed and growth rate due to the random fluctuations μ; in particular, attention is focused on the behaviour of these expressions for short and long correlation lengths (case μ = μ(z)) and times (case μ = μ(t)). For the case μ = μ(z), which represents a model for the temperature and salinity fine-structure in the ocean, the appropriate statistics of the fluctuations observed at station P (50°N, 145°W) have been incorporated into the theory to estimate the actual importance of the effects due to these random fluctuations. It is found that the phase speed of the mean wave decreases significantly if (i) the wavelength is short compared to g/No 2 or (ii) the wave number vector is essentially horizontal and the wave frequency is very close to N o. Also, the random fluctuations cause a significant growth (decay) in the amplitude of a wave propagating upwards (downwards) through a depth of a few kilometers. However, in the direction of energy propagation, the kinetic energy is conserved. Finally, it is shown that the average effect of the depth dependent fluctuations at station P is to slightly decrease the stability frequency and the magnitude of the group velocity.  相似文献   

16.
Abstract

This paper analyzes the linear stability of a rapidly-rotating, stratified sheet pinch in a gravitational field, g, perpendicular to the sheet. The sheet pinch is a layer (O ? z ? d) of inviscid, Boussinesq fluid of electrical conductivity σ, magnetic permeability μ, and almost uniform density ρ o; z is height. The prevailing magnetic field. B o(z), is horizontal at each z level, but varies in direction with z. The angular velocity, Ω, is vertical and large (Ω ? VA/d, where VA = B0√(μρ0) is the Alfvén velocity). The Elsasser number, Λ = σB2 0/2Ωρ0, measures σ. A (modified) Rayleigh number, R = gβd20V2 A, measures the buoyancy force, where β is the imposed density gradient, antiparallel to g. A Prandtl number, PK = μσK, measures the diffusivity, k, of density differences.  相似文献   

17.
ABSTRACT

The instability of ideal non-divergent zonal flows on the sphere is determined numerically by the instability criterion of Arnold (Ann. Inst. Fourier 1966, 16, 319) for the sectional curvature. Zonal flows are unstable for all perturbations besides for a small set which are in approximate resonance. The planetary rotation is stable and the presence of rotation reduces the instability of perturbations.  相似文献   

18.
沈明  段洪涛  曹志刚  薛坤  马荣华 《湖泊科学》2017,29(6):1473-1484
下行漫衰减系数(K_d)是描述水下光场的重要参数,决定水体真光层深度,影响着浮游藻类初级生产力及其分布特征.基于2008—2013年太湖4次大规模野外试验数据,分析太湖水体漫衰减系数特征及其影响因素,建立适用于多种卫星数据且较高精度的太湖水体490 nm处下行漫衰减系数估算模型.结果表明:无机悬浮物是太湖水体漫衰减系数的主要影响因素;红绿波段比值(674 nm/555 nm)最适合于太湖K_d(490)估算,模型反演精度较高(N=72,R~2=0.72,RMSE=0.89 m~(-1),MAPE=21.58%);利用实测光谱数据,模拟得到MODIS/EOS、OLCI/Sentinel-3、GOCI/COMS和MSI/Sentinel-2等主要传感器波段的信号,构建适用于多种卫星传感器K_d(490)估算的红绿波段模型,建模精度较高(N=72,R~20.7,RMSE0.9 m~(-1),MAPE22.0%),且进行了验证(N=37,R~20.7,RMSE0.9 m~(-1),MAPE22.0%).  相似文献   

19.
A tension infiltrometer technique was used to characterize differences in hydraulic conductivity (K) in two rain‐fed hillsides (north‐facing and south‐facing) in central Chile. For the north‐facing locations, smaller values of K (at a range of supply water pressure heads ψ) compared with south‐facing locations were found, with accentuated differences close to saturation (zero pressure head). The differences were attributed to differences in texture and organic matter contents observed for the two sites. Furthermore, K(ψ) had a tendency to increase with increasing slope gradient. This tendency was to an extent explained by the deviation from requirements of measurements on level ground. The differences found in K(ψ) between different slope gradients were explained by the differences in the vertical and lateral hydraulic conductivity and by the occurrence of surface sealing in low slope plots. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
ABSTRACT

In this work, the applicability of 12 solar radiation (RS) estimation models and their impacts on daily reference evapotranspiration (ETo) estimates using the Penman‐Monteith FAO-56 (PMF-56) method were tested under cool arid and semi-arid conditions in Iran. The results indicated that the average increase in accuracy of the ETo estimates by the calibrated RS models, quantified by the decrease in RMSE, was 2.8% and 6.4% for semi-arid and arid climates, respectively. Mean daily deviations in the estimated ETo by the calibrated RS equations in semi-arid climates varied from ?0.283?mm/d-1 for the Glover‐McCulloch model to 0.080?mm/d for the El-Sebaii model, with an average of ?0.109?mm/d-1, and in arid climates, they ranged from ?0.522?mm/d-1 for the Samani model to 0.668?mm/d for the El-Sebaii model, with an average of 0.125?mm/d-1.
Editor D. Koutsyiannis; Associate editor Not assigned  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号