首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
为研究基础隔震结构抗连续倒塌性能,以备用荷载路径法为基础,采用静力非线性Pushdown方法和静力线性方法对一栋典型的收进式竖向不规则钢筋混凝土基础隔震结构进行分析,从备用荷载路径的抗连续倒塌机制和需求能力比两个角度研究竖向不规则钢筋混凝土基础隔震结构的抗连续倒塌性能,为基础隔震结构抗连续倒塌设计提供参考;为进一步研究结构布置形式不规则性以及裙楼和塔楼层数变化对竖向不规则基础隔震抗连续倒塌性能的影响,分别建立塔楼布置不同、裙楼与塔楼层数变化的模型进行对比研究。研究表明:除角柱失效工况自身无法产生悬链线机制外,其余底层框架柱失效工况中备用荷载路径在整个推覆倒塌过程中均表现出明显的悬链线机制;当隔震支座失效时,由于隔震层水平刚度小,相邻支座无法提供足够的侧向约束作用而难以形成明显的悬链线机制;增加结构冗余度和备用荷载路径中参与荷载传递的构件数量可以有效提高剩余结构抗连续倒塌能力;除角柱和角支座外,隔震支座失效工况DCR值普遍大于对应位置底层框架柱失效工况,备用荷载路径中某些构件的失效风险相对较大。  相似文献   

2.
为研究钢管混凝土框架-核心筒混合结构在局部构件失效后的连续倒塌机制,基于ABAQUS纤维梁单元和分层壳单元,采用课题组开发的材料本构子程序iFiberLUT,进行了一栋33层钢管混凝土框架-核心筒混合结构在1、17、33层柱和核心筒墙体失效工况下的连续倒塌非线性动力分析,研究了典型柱和剪力墙失效后剩余结构的抗连续倒塌机制。结果表明:33层构件失效时上部节点位移反应最大,17层次之,1层最小,相比核心筒墙体失效,柱失效时上部节点竖向位移更大,震荡更明显;各工况作用对核心筒影响均较小,且核心筒的存在增强了楼板的薄膜效应,提高了结构抗倒塌能力,失效位置距核心筒越近提高越显著;典型构件失效后结构的传力路径遵循"就近原则"向周围构件传递,楼板和核心筒有力的提高了结构的冗余传递路径和整体性。  相似文献   

3.
向量式有限元是以向量力学为基础的一种新的结构分析方法,在处理结构大变形等复杂行为时具有较大的优势。基于向量式有限元理论建立了黏滞阻尼单元,对附加黏滞阻尼器的平面钢框架结构进行了抗竖向连续倒塌动力分析,结合拆除构件法,采用MATLAB编制可以考虑初始变形的瞬时卸载法程序,实现结构在构件拆除前的静力分析和构件拆除后动力分析的全过程统一。研究了阻尼器布置位置和参数在结构抗竖向连续倒塌中的性能需求,以失效点竖向位移时程曲线、梁端转角、动力放大系数和结构塑性铰分布为参考指标,对比分析布置阻尼器前后钢框架结构的抗连续倒塌能力。结果表明向量式有限元是一种研究结构竖向连续倒塌动力响应的有效方法,合理布置阻尼器能够有效控制剩余结构的变形和振动,降低构件内力,减少塑性铰个数,较大地提高结构的抗竖向连续倒塌能力。  相似文献   

4.
为研究不同形式的中心支撑对钢管混凝土结构抗连续倒塌性能的影响,基于纤维梁模型建立5种钢管混凝土框架-中心支撑结构数值模型,在合理选取钢材和混凝土材料本构模型的基础上,计算不同失效工况下结构的抗连续倒塌非线性动力响应,通过非线性静力加载获得结构的整体刚度和极限承载力。研究结果表明:设置中心支撑均可以提高结构的整体刚度和抗倒塌承载能力,其中对边柱失效工况的提升效果好于中柱失效工况;设置中心支撑提供了新的荷载传递路径,可以有效减小失效柱相邻构件的分配内力;X型支撑在不同失效工况下都能显著提升框架刚度和承载能力,降低失效节点的竖向位移,反斜支撑框架表现出更好的延性和极限承载能力,研究结果可为建筑结构抗连续倒塌设计提供参考。  相似文献   

5.
目前国内外学者将地震倒塌和连续倒塌作为两个独立的领域进行研究,实际上框架结构的倒塌破坏系由二种机理耦合作用所致。针对此问题,采用拆除构件设计法,应用有限元程序ANSYS/LS-DYNA完成了钢筋混凝土框架结构拆除底层关键柱后在地震作用下的倒塌仿真分析,重点研究了层高、跨度、层数和关键柱位置对钢筋混凝土框架结构抗倒塌性能的影响。结果表明:对于平面框架模型,由底层柱脚及梁柱节点区柱端失效破坏引起的柱铰破坏机制,是导致结构倒塌的主要原因。底层中柱失效后,底层迅速转化为柱铰机制,结构在重力作用下失稳坍塌,适当增加层高,减小跨度,增加层数对框架结构在底层关键柱失效后的抗地震倒塌性能有益;对于三维空间框架模型,分析表明,空间框架结构在拆除角柱后框架倒塌破坏最为严重,结构的破坏过程可以概括为3个阶段:(1)弹性阶段;(2)重力作用影响占主导地位的塑性阶段;(3)地震作用占主导地位的塑性阶段。  相似文献   

6.
竖向不规则框架结构连续性倒塌分析   总被引:1,自引:0,他引:1  
杜永峰  包超  李慧 《地震学刊》2014,(2):229-234
国内外学者利用非线性静力方法进行结构倒塌分析时,研究对象主要集中在规则的结构形式,而针对大量出现的造型独特的竖向不规则建筑的倒塌研究还相对较少。本文基于拆除构件法,利用SAP2000结构有限元软件,对竖向不规则多层框架结构进行了基于非线性静力Pushdown方法的抗连续性倒塌研究。分别研究了拆除同一结构中不同部位构件、不同层数塔楼结构中相同部位构件后剩余结构的承载力变化情况,研究结果表明:拆除竖向承重柱后的剩余结构承载力,随着上部塔楼层数的增加以及拆柱位置的上升而出现不同程度的降低;加强裙楼顶部水平向承重构件,可以使塔楼底部构件破坏后的剩余结构更好地发挥悬链线机制,并防止剩余结构发生无明显征兆的连续性倒塌。  相似文献   

7.
按照我国现有抗震标准设计了一个1/3缩尺的两层3×2跨异形柱框架结构模型,并在替代柱的二层柱顶进行了竖向静力加载,以研究模型框架在失去底层短边中柱后,框架结构在倒塌破坏过程中的受力特性、破坏机理以及最终的破坏形态。研究结果表明:框架的倒塌破坏全过程可分为弹性阶段、弹塑性阶段、塑性阶段和悬链线阶段;梁端塑性铰、框架梁的悬链线作用及失效柱相邻跨内梁板柱的空间作用,可有效提高结构的抗连续倒塌能力;框架结构顶层角部的梁柱节点为关键构件。  相似文献   

8.
建筑结构在爆炸荷载作用下的连续倒塌问题近些年被很多学者所关注。从本质上讲,结构的抗倒塌和抗震都是动荷载作用下的结构响应问题,因此,结构抗震设计的很多理念对结构的抗连续倒塌设计同样适用。本文采用数值模拟的方法,分别对按抗震设防烈度Ⅵ度、Ⅶ度和Ⅷ度的钢框架结构进行了40kg炸药爆炸作用下的连续倒塌分析,探讨了抗震设防烈度对钢框架连续性倒塌的影响。计算结果表明,抗震设防烈度高的钢框架结构其抵抗连续倒塌的能力较强。其中,按Ⅵ度设防的结构发生了连续倒塌;按Ⅶ度设防的结构没有发生连续性倒塌,只发生了一定程度的变形和破坏;而相比之下,按Ⅷ度设防的结构变形和破坏最为轻微。  相似文献   

9.
地震、火灾和撞击等极端情况可能会引起建筑结构发生局部或者大范围的坍塌破坏。现有关于建筑结构抗连续倒塌研究主要考虑楼板对梁整体刚度的贡献,并未考虑板内钢筋的连续拉结作用,可能保守的评估了楼板对整体结构的抗连续倒塌贡献。因此,选取圆截面钢管混凝土组合节点为研究对象,基于ABAQUS软件建立板内钢筋端部不约束和约束两种不同边界条件的数值模型,分析竖向中柱失效工况下节点的破坏机理,对比不同约束条件下钢管混凝土节点的抗连续倒塌承载力计算曲线,观察板内钢筋约束条件下对该类节点梁机制和悬链线机制承载力的影响。研究结果表明:考虑板内钢筋单向拉结作用时,组合节点倒塌破坏分为:梁机制阶段、转化阶段、悬链线机制阶段和破坏阶段;对比两种不同约束条件下所得抗力曲线发现,考虑板内钢筋拉结作用时,梁机制承载力提高了7%左右,悬链线阶段承载力变化并不明显。  相似文献   

10.
近地空中爆炸作用下钢框架结构冲击响应   总被引:2,自引:0,他引:2  
采用多物质欧拉与拉格朗日耦合算法,对框架结构和混凝土地面采用Lagrange单元、空气和炸药采用多物质ALE单元,建立流固耦合有限元模型,对一个五层的钢框架结构在近地爆炸作用下冲击压力波的传播过程、结构冲击响应和变形以及破坏过程进行了数值模拟.数值模拟分析结果表明,拉格朗日-欧拉耦合算法较好地模拟了爆炸冲击波在介质中的传播和作用在结构上的爆炸荷载效应.在爆炸近区,空气爆炸冲击波的衰减速率快;爆炸产生强烈的冲击波首先使钢框架结构正面的柱和梁柱节点区产生很大的塑性变形,钢框架柱在发生爆炸的瞬间失去承载能力,最终导致建筑物整体倒塌.考虑结构变形和流体荷载间的相互影响可以较真实地模拟结构在爆炸荷载作用下的连续倒塌过程,为研究结构在爆炸荷载作用下的连续倒塌提供了有效手段.  相似文献   

11.
为提高装配式钢筋混凝土(RC)框架结构的抗震性能,并针对震后梁、柱构件损伤严重等问题,提出一种基于人工塑性消能铰的装配式混凝土框架-摇摆墙结构。人工消能塑性铰即梁、柱构件在梁端采用机械铰及附加耗能钢板连接的构造,基于该构造的框架结合底部铰接的剪力墙,形成人工消能塑性铰框架-摇摆墙结构。使用OpenSEES软件建立了人工消能塑性铰框架-摇摆墙模型及2组对比模型,选用24条天然地震波对3组结构模型进行双向地震响应分析,结果表明:人工消能塑性铰框架-摇摆墙结构可通过摇摆墙的构造,提升结构竖向连续刚度,使结构层间变形均匀,实现完全梁铰的理想屈服机制;在整体可控的变形模式下充分利用人工消能塑性铰滞回耗能,有效减小结构地震响应。  相似文献   

12.
Improving seismic performance is one of the critical objectives in earthquake engineering. With the development of economy and society, reparability and fast resilience of a structure are becoming increasingly important. Reinforced concrete (RC) frame structure is prone to soft story mechanism. As a result, deformation and damage are so concentrated that reparability is severely hampered. Rocking wall provides an available approach for deformation control in RC frame by introducing a continuous component along the height. Previous researches mostly focus on seismic responses of rocking wall frame structures, while damage mode and reparability have not been investigated in detail. In this study, a novel infilled rocking wall frame (IRWF) structure is proposed. A half‐scaled IRWF model was designed according to Chinese seismic design code. The model was subjected to cyclic pushover testing up to structure drift ratio of 1/50 (amplitude 1/50), and its reparability was evaluated thereafter. Retrofit was implemented by wrapping steel plates and installing friction dampers. The retrofitted model was further loaded up to amplitude 1/30. The IRWF model showed excellent reparability and satisfactory seismic performance on deformation control, damage mode, hysteresis behavior, and beam‐to‐column joint rotation. After retrofitting, capacity of the model was improved by 11% with limited crack distribution. The model did not degrade until amplitude 1/30, due to shear failure in frame beams. The retrofit procedure was proved effective, and reparability of the IRWF model was demonstrated. Seismic resilience tends to be achieved in the proposed system.  相似文献   

13.
基于“强柱弱梁”的屈服机制,依据能量平衡方法设计了某6层RC框架结构,采用震级-震中距条带地震动记录选取方法,选取12条随机地震动,利用Perform-3D有限元分析软件对结构进行增量动力(IDA)分析,得到了结构的地震易损性曲线、破坏状态概率曲线以及结构破坏概率矩阵。分析结果表明:该方法设计的结构能够形成预设的“强柱弱梁”屈服机制,可以保证结构中梁充分参与耗能,同时结构具有较强的抗倒塌能力,可以满足“小震不坏,中震可修,大震不倒”的性能要求。  相似文献   

14.
The paper presents results from the first series of an ongoing experimental study aimed at quantifying the effect of axial column load on the shear capacity of beam-to-column connections. This is deemed important due to the recent evidence showing that vertical earthquake ground motion, when combined with high overturning moments, may cause reduced column compression or even tension. In which case, the concrete contribution to shear resistance in the panel zone is diminished, which may lead to failure prior to the attainment of the full resisting capacity of the beam section. The results first show that the failure mode of the models was, as intended, shear failure of the panel zone. It is further observed that the axial column load has a marked effect on the shear deformation capacity, yield point, cracking pattern, ultimate capacity and ductility of the panel zone. Differences in the range of 30 per cent in capacity and 50 per cent in deformability were recorded. The preliminary results are useful in providing design guidance for structures located in areas of potential high vertical ground motion component. Also, for high-rise structures, where there are large overturning moments, the results may be of use in ensuring a uniform safety factor (or overstrength) in various non-dissipative parts of the structure.  相似文献   

15.
Beam–column sub‐assemblages are the one of the most vulnerable structural elements to the seismic loading and may lead to devastating consequences. In order to improve the performance of the poorly/under‐designed building structures to the critical loading scenarios, introduction of steel bracing at the RC beam–column joint is found to be one of the modern and implementable techniques. In the present work, a diagonal metallic single haunch/bracing system is introduced at the beam–column joints to provide an alternate load path and to protect the joint zone from extensive damage because of brittle shear failure. In this paper, an investigation is reported on the evaluation of tae influence of different parameters, such as angle of inclination, location of bracing and axial stiffness of the single steel bracing on improving the performance through altering the force transfer mechanism. Numerical investigations on the performance of the beam–column sub‐assemblages have been carried out under cyclic loading using non‐linear finite element analysis. Experimentally validated numerical models (both GLD and upgraded specimen) have been further used for evaluating the performance of various upgrade schemes. Cyclic behaviour of reinforcement, concrete modelling based on fracture energy, bond‐slip relations between concrete and steel reinforcement have been incorporated. The study also includes the numerical investigation of crack and failure patterns, ultimate load carrying capacity, load displacement hysteresis, energy dissipation and ductility. The findings of the present study would be helpful to the engineers to develop suitable, feasible and efficient upgrade schemes for poorly designed structures under seismic loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号