首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been shown that the use of base isolation not only attenuates the response of a primary structural system but also reduces the response of a secondary system mounted on or within the main structure. The isolation system, superstructure and equipment may be made of different materials with significantly different energy dissipation characteristics such that the damping matrix for the combined system is non-classical and can only be approximately expressed by modal damping ratios if the classical mode method is used for analysis. The object of this paper is to evaluate the accuracy of this procedure in approximating the responses of base-isolated structures and internal equipment. The complex mode method can provide exact solutions to problems with non-classical damping and is used here to find the exact response of the isolation-superstructure-equipment system. The entire system is assumed to be linear elastic with viscous damping and the superstructure is assumed to be proportionally damped so that the deformation of the superstructure can be expressed in terms of its classical modes. Recognizing that the ratio of the equipment mass to the structural mass and the ratio of the stiffness of the isolation system to the superstructural stiffness are both small, perturbation methods are used to find the response. This study shows that the response of base-isolated structures can be determined by the classical mode method to some degree of accuracy, but the higher frequency content is distorted. The equipment response derived by the classical mode method is much smaller than the exact solution so that the complex mode method should be applied to find equipment response.  相似文献   

2.
This study investigates the effect of soil–structure interaction (SSI) on the response of base-isolated buildings. The equations of motion are formulated in the frequency domain, assuming frequency-independent soil stiffness and damping constants. An equivalent fixed-base system is developed that accounts for soil compliance and damping characteristics of the base-isolated building. Closed-form expressions are derived, followed by a thorough parametric study involving the pertinent system parameters. For preliminary design, the methodology can serve as a means to assess effective use of base isolation on building structures accounting for SSI. This study concludes that the effects of SSI are more pronounced on the modal properties of the system, especially for the case of squat and stiff base-isolated structures.  相似文献   

3.
孙臻  刘伟庆 《地震工程学报》2020,42(6):1369-1376
为了研究不同设计参数条件下基础隔震结构非线性响应的概率密度演化特征,采用两质点模型来模拟基础隔震结构,隔震层与上部结构分别采用Bouc-Wen模型与刚度退化的Bouc-Wen模型来描述其非线性特征,运用概率密度演化理论,进行隔震结构非线性随机地震响应的概率密度演化分析。采用基于物理的随机地震动模型生成人工地震动,提出基础隔震结构非线性随机地震响应的概率密度演化分析的基本步骤。通过改变基础隔震结构的设计参数,同时考虑激励的随机性,研究基础隔震结构非线性随机地震响应的概率密度演化规律。结果表明,基础隔震结构的阻尼比、周期比和屈重比取合理范围,能使隔震结构上部和下部的位移可控。  相似文献   

4.
平面不规则基础隔震结构抗扭设计研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对平面不规则结构在水平地震作用下的振动特性,通过调整隔震层隔震支座的布置,得到3种不同工况的隔震层刚心与上部结构质心、刚心相对位置关系,分别以楼层位移和层间位移为指标的扭转位移比,作为平面不规则基础隔震结构扭转响应指标,利用弹塑性时程分析方法,通过对3种不同工况的扭转指标对比分析研究,提出适用于平面不规则基础隔震结构的抗扭设计方法。结果表明:对于平面不规则结构,应在保证隔震层扭转位移比小于1.2的基础上,使隔震层的刚心和上部结构的刚心分别位于上部结构质心的两侧,可有效控制上部结构的扭转。  相似文献   

5.
A base-isolated building is liable to have a small horizontal eccentricity between the centre of mass of the superstructure and the centre of rigidity of the supporting bearings. In seismic analysis, the structure is modelled as a rigid block with tributary masses supported on massless elastomeric rubber bearings placed at a constant elevation below the centre of mass. This simplified system has three degrees of freedom: two translations and one rotation in the vertical plane. The investigation of the dynamic behaviour of a base-isolated building is carried out for both the detuned and the perfectly tuned cases. In the detuned case, the natural frequencies of the system are assumed to be well separated. In the perfectly tuned case, the uncoupled rocking frequency is assumed to be identical to the vertical translational frequency, which may result from an unusual mass distribution and/or an extreme aspect ratio of the superstructure. Perturbation methods are implemented in finding the dynamic characteristics for both cases. However, the dynamic response of the perfectly tuned case is the major concern in this investigation. The Green's functions for the displacement response of the three-degree-of-freedom system are derived for both the undamped and damped conditions. The response spectrum modal superposition method is used in estimating the maximum acceleration response. A simple method, accounting for the effect of closely spaced modes, is proposed for combining modal maxima and results in an approximate solution corresponding to a single-degree-of-freedom system. This approximate solution may be used for the preliminary design of a base-isolated structure. Numerical results for a base-isolated building subjected to the vertical component of the El Centro earthquake of 1940 were carried out for comparison with these analytical results. The proposed modal combination method showed superiority over the conventional Square Root of the Sum of the Squares method in estimating maximum responses. The results also indicated that the approximate single-degree-of-freedom system yields accurate estimations. It is shown that the effect of rocking coupling on the vertical response of base-isolated structures subjected to transient loadings, such as earthquake motions, can generally be neglected as a result of the combined effects of the time lag between the maximum translational and rotational responses and the influence of damping in the isolation system, which for elastomeric bearings can be as high as 8 to 10 per cent of critical.  相似文献   

6.
对一基础隔震钢筋混凝土框架结构在无填充墙情况下进行了环境激励下的动力测试,重点利用Hilbert-Huang变换与随机减量技术相结合的方法识别了其模态参数,并与随机子空间识别法、有理分式多项式法识别的结果进行了对比。识别结果表明在环境激励下,基础隔震结构的基本周期远小于多遇和罕遇地震工况下设计计算的基本周期;等效黏滞阻尼比很小,近乎于基础固定模型。对隔震层阻尼特性的分析表明,环境激励下可以将基础隔震结构视为经典的比例阻尼系统。进一步以识别的模态参数为基准,采用优化的方法数值反演了环境激励下该结构隔震层的实际水平等效刚度,结果表明其值为多遇地震下计算刚度取值的10.75倍。  相似文献   

7.
通过对隔震结构进行非线性动力响应分析,分别研究地震动参数和支座参数对结构地震响应的影响。首先,建立铅芯橡胶支座基础隔震结构的非线性运动方程;然后,以人工合成脉冲型地震动作为输入,运用MATLAB进行编程并求解结构在脉冲型地震动作用下的地震响应;最后,分别研究速度脉冲周期、支座屈服力、屈服后与屈服前的刚度比对隔震支座最大位移和上部结构层间位移的影响。研究结果表明,脉冲周期对结构地震响应影响很大,在进行隔震设计时应使结构自振周期远离脉冲周期;支座刚度比对结构地震响应影响较大,在进行支座选型时应重点关注;支座屈服力对支座位移的影响显著,屈服力越大,支座位移越小。  相似文献   

8.
This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER-level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.  相似文献   

9.
基于结构动力学原理和有限元基本理论,利用SAP2000有限元分析软件,以某框架结构基础隔震楼和与其相近的非隔震楼为研究对象分别建立分析模型,运用动力时程分析法对两种模型进行水平地震反应分析。结果表明:基础隔震楼的水平向地震反应远小于非隔震楼,其上部结构的自振周期明显大于非隔震楼,其层间剪力和基底剪力、楼层相对位移和加速度低于非隔震楼。总体来说,隔震支座可以显著降低水平向地震对于结构的不良反应,值得推广应用。  相似文献   

10.
Optimum isolation damping for minimum acceleration response of base-isolated structures subjected to stationary random excitation is investigated. Three linear models are considered to account for the energy dissipation mechanism of the isolation system: a Kelvin element, a linear hysteretic element and a standard solid linear element, commonly used viscoelastic models for isolation systems comprising natural rubber bearings and viscous dampers. The criterion selected for optimality is the minimization of the mean-square floor acceleration response. The effects of the frequency content of the excitation and superstructure properties on the optimum damping and on the mean-square acceleration response are addressed. The study basically shows that the attainable reduction in the floor acceleration largely depends on the energy dissipation mechanism assumed for the isolation system as well as on the frequency content of the ground acceleration process. Special care should be taken in accurately modelling the mechanical behaviour of the energy dissipation devices.  相似文献   

11.
周力强  王玉山  王迪 《地震工程学报》2020,42(3):624-628,664
随着基础隔震技术的发展,我国在高烈度地区广泛开展基础隔震技术的工程应用必将成为一种趋势,但由于建筑功能和建筑造型的丰富多彩,结构的质量中心和刚度中心也趋于分布不均匀,以三层的钢框架结构为分析模型,利用结构分析软件Sap2000对上部结构质量中心和隔震层质量中心、刚度中心分布不均匀的三种方案进行单向水平地震作用下的非线性时程分析,分析结果表明:上部结构质量中心与隔震层质量中心存在偏心距对结构的扭转效应以及地震响应有较大的影响,减小上部结构的偏心距对调整结构的水平地震响应的影响成效最为显著;对于隔震层而言,隔震层的刚度中心偏心距较质量中心偏心距对上部结构的影响更大,有效控制隔震层刚度中心的偏心距在隔震设计中会更加有效。  相似文献   

12.
This paper proposes an aseismic design concept in which the superstructure of a base-isolated building is divided into several segments. Each segment may comprise a few storeys and is interconnected by additional vibrational isolation systems. The dynamic characteristics of the segmental buildings are investigated. The optimum parameters of the vibration isolation systems are determined by minimizing the mean square acceleration response. The seismic response of a typical segmental building subjected to the N—S component of the 1940 El Centro earthquake input is evaluated and compared with the responses of the corresponding fixed-base and conventional base-isolated buildings. The comparisons show that, when the superstructure is segmented, while the acceleration response in the superstructure remains as small as that in the conventional base-isolated building, the displacement across the base isolation system at foundation level is substantially reduced.  相似文献   

13.
The seismic response of light secondary systems in a building is dependent on the response of the primary structural system to the seismic ground motion with the result that very high accelerations can be induced in such secondary systems. This response can be reduced through the use of aseismic base isolation which is a design strategy whereby the entire building can be decoupled from the damaging horizontal components of seismic ground motion by the use of some form of isolation system. The paper presents a theoretical analysis of the response of light equipment in isolated structures and a parallel experimental programme both of which show that the use of base isolation can not only attenuate the response of the primary structural system but also reduce the response of secondary systems. Thus, the design of equipment and piping in a base-isolated building is very much simpler than that for a conventionally founded structure: inelastic response and equipment-structure interaction need not be considered and multiple support response analysis is rendered unnecessary. Although an isolation system with linear elastic bearings can reduce the acceleration of the structure, it may be accompanied by large relative displacements between the structure and the ground. A system using lead-rubber hysteretic bearings, having a force-displacement relation which is approximately a bilinear loop, can reduce these displacements. A parallel experimental programme was carried out to investigate the response of light equipment in structures isolated using lead-rubber bearings. The experimental results show that these bearings can dissipate energy and limit the displacement and acceleration of the structure but are less effective in reducing the accelerations in the internal equipment. The results of both the analysis and the tests show that base isolation is a very effective method for the seismic protection of light equipment items in buildings.  相似文献   

14.
An innovative approximate method is presented to consider the plan asymmetry, nonlinear structural behaviour and soil-structure interaction (SSI) effects simultaneously. The proposed method so-called Flexible base 2DMPA (F2MPA) is an extension of 2 degrees of freedom modal pushover analysis (2DMPA) approach to consider foundation flexibility in seismic response analysis of plan asymmetric structures which itself were developed based on Uncoupled Modal Response History Analysis method for inelastic fixed-base asymmetric structures. In F2MPA for each mode shape using 2DMPA procedure, the elastic and inelastic properties of 2DOF modal systems corresponding to the fixed-base structure are initially derived. Then in each time step, displacements and inelastic restoring forces of the superstructure are computed from modal equations of the flexibly-supported structure. In each time step, the nonlinear secant stiffness matrix corresponding to the n-th MDOF modal equations of soil-structure system is updated using the corresponding modal 2DOF system of fixed-base structure. To update the transformed modal stiffness matrix of the SSI system, this matrix is partitioned and it is assumed that the non-linear variation of the superstructure can be estimated from the variation of modal stiffness matrix of the fixed-base structure. Accuracy of the proposed method was verified on an 8-story asymmetric-plan building under different seismic excitations. The results obtained from F2MPA method were compared with those obtained by nonlinear response history analysis of the asymmetric soil-structure system as a reference response. It was shown that the proposed approach could predict the results of the nonlinear time history analysis with a good accuracy. The main advantage of F2MPA is that this method is much less time-consuming and useful for the practical aims such as massive analysis of a nonlinear structure under different records with multiple intensity levels.  相似文献   

15.
Closed-form solutions are derived for the modal characteristics and seismic response of a base-isolated structure equipped with additional inerters. By simplifying the structure-isolator-inerter system in terms of the two-degree-of-freedom (2DOF) model, the modal frequencies, mode shapes, damping ratios, and participation factors of the system are derived. Consequently, analytical seismic response solutions are formulated by the modal superposition method. Utilizing these analytical solutions, an extensive parametric study has been carried out to investigate the effect of supplement inerters on both the modal characteristics and seismic response of the structure-isolator-inerter system. There is a critical inertance leading to the zero second modal participation factor (ie, the disappearance of the second modal response). The associated critical inertance ratio is derived in closed form as well. Moreover, it is observed that the reduction of deformation of isolators by increasing the inertance may be offset by the increase in relative displacements of the superstructure. To circumvent this adverse effect, an optimal range of inertance is identified whereby both the deformation of isolators and the relative displacement of the superstructure are mitigated concurrently.  相似文献   

16.
A method is presented for generating floor response spectra for aseismic design of equipment attached to primary structures. The method accurately accounts for tuning, interaction and non-classical damping, which are inherent characteristics of composite oscillator-structure systems. Modal synthesis and perturbation techniques are used to derive the modal properties of the composite system in terms of the known properties of the structure and the oscillator. Floor spectra are generated directly in terms of these derived properties and the input ground response spectrum using modal combination rules that account for modal correlations and non-classical damping. The computed spectra, in general, are considerably lower than conventional floor response spectra due to the effect of interaction. They provide more realistic and economical criteria for design of equipment. The method is accurate to the order of perturbation and is computationally efficient, as it avoids time-history analysis and does not require numerical eigenvalue evaluation of the composite oscillator-structure system. The results of a parametric study demonstrate the accuracy of the method and illustrate several key features of floor response spectra.  相似文献   

17.
An approximate solution of the classical eigenvalue problem governing the vibrations of a relatively stiff structure on a soft elastic soil is derived through the application of a perturbation analysis. The full solution is obtained as the sum of the solution for an unconstrained elastic structure and small perturbing terms related to the ratio of the stiffness of the soil to that of the superstructure. The procedure leads to approximate analytical expressions for the system frequencies, modal damping ratios and participation factors for all system modes that generalize those presented earlier for the case of stiff soils. The resulting approximate expressions for the system modal properties are validated by comparison with the corresponding quantities obtained by numerical solution of the eigenvalue problem for a nine-story building. The accuracy of the proposed approach and of the classical normal mode approach is assessed through comparison with the exact frequency response of the test structure.  相似文献   

18.
给出了村镇滑移隔震建筑瞬时摩擦耗能的概念,并以此概念为响应指标。通过极差大小的对比,分析了该响应指标对刚度比、第二阶段刚度系数、隔震层屈服位移、隔震层摩擦系数、系统质量比和上部结构自振周期六个参数变化的敏感程度,阐述了上述系统参数对瞬时摩擦耗能这一响应指标的影响规律。研究表明:场地条件和地震动幅值大小对瞬时摩擦耗能均有显著影响;在所考虑的参数范围内,上部结构自振周期总是对瞬时摩擦耗能有较为显著的影响,摩擦系数对瞬时摩擦耗能的影响跟场地条件有关,Ⅰ类场地条件中摩擦系数对瞬时摩擦耗能影响不显著,而Ⅱ、Ⅲ和Ⅳ类场地条件中,摩擦系数对瞬时摩擦耗能的影响则非常显著;隔震层屈服位移、刚度比和第二阶段刚度系数总得来讲对瞬时摩擦耗能影响不显著,质量比对瞬时摩擦耗能影响居中。  相似文献   

19.
This study examines the roles of soil-structure interaction (SSI), higher modes, and damping in a base-isolated structure built on multiple layers of soil overlying a half space. Closed-form solutions for the entire system, including a superstructure, seismic isolator, and numerous soil layers overlying a half-space, were obtained. The formulations obtained in this study simply in terms of well-known frequencies and mechanical impedance ratios can explicitly interpret the dynamic behavior of a base-isolated structure interacting with multiple soil layers overlying a half-space. The key factors influencing the performance of the isolation system are the damping ratio of the isolator and the ratio of the natural frequency of the fixed-base structure to that of the isolated structure by assuming that the superstructure moves as a rigid body. This study reveals that higher damping in the base isolator is unfavorable to higher mode responses that usually dominate the responses of the superstructure and that the damping mechanism plays an important role in transmitting energy in addition to absorbing energy. It is also concluded that it is possible to design a soft soil layer as an isolation system for isolating vibration energy.  相似文献   

20.
为研究基础隔震结构抗连续倒塌性能,以备用荷载路径法为基础,采用静力非线性Pushdown方法和静力线性方法对一栋典型的收进式竖向不规则钢筋混凝土基础隔震结构进行分析,从备用荷载路径的抗连续倒塌机制和需求能力比两个角度研究竖向不规则钢筋混凝土基础隔震结构的抗连续倒塌性能,为基础隔震结构抗连续倒塌设计提供参考;为进一步研究结构布置形式不规则性以及裙楼和塔楼层数变化对竖向不规则基础隔震抗连续倒塌性能的影响,分别建立塔楼布置不同、裙楼与塔楼层数变化的模型进行对比研究。研究表明:除角柱失效工况自身无法产生悬链线机制外,其余底层框架柱失效工况中备用荷载路径在整个推覆倒塌过程中均表现出明显的悬链线机制;当隔震支座失效时,由于隔震层水平刚度小,相邻支座无法提供足够的侧向约束作用而难以形成明显的悬链线机制;增加结构冗余度和备用荷载路径中参与荷载传递的构件数量可以有效提高剩余结构抗连续倒塌能力;除角柱和角支座外,隔震支座失效工况DCR值普遍大于对应位置底层框架柱失效工况,备用荷载路径中某些构件的失效风险相对较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号