首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
给出了定边-景泰大地电磁剖面探测结果并对其进行了分析.鄂尔多斯块体内部电性结构简单,电性界面成层性好,而在其西缘弧形断裂带,电性结构复杂,电导率横向变化较大.在弧形断裂带上地幔低阻层埋藏深度加大,这与北面的银川断陷盆地上地幔结构上隆形成反照,经分析认为银川断陷盆地属于拉张性质,而弧形断裂带属于挤压性质,由于均衡调整作用,造成了两者上地幔结构的反差.深部电性结构在大罗山-惠安堡之间有一局部上隆,经分析认为此处可能为深大断裂,南北构造带仅在此通过.  相似文献   

2.
屈健鹏 《内陆地震》1998,12(4):312-319
对在地理位置上具有一定代表性的鄂尔多斯块体体西缘及西南缘 的3条大地电磁剖面进行了分析。盐池-阿拉善左旗剖面:整条剖面上均有壳内低阻层和上地幔低阻尼分布,低阻层在银川断陷地上降。  相似文献   

3.
天水地震区综合地球物理剖面的建立与壳幔结构   总被引:2,自引:0,他引:2       下载免费PDF全文
根据人工地震、重力、大地电磁和地热资料,在天水地震区建立了二个综合地球物理剖面.对这两个剖面进行了分析,研究了该地区的壳幔结构.结果表明,沿西秦岭北缘断裂带,地壳变薄,低速层、低密层和低阻层同步出现,同时在断裂带附近形成了宽几十到上百公里的相变过渡带,其影响深度可达上地幔.  相似文献   

4.
通过在大别造山带东部横穿超高压变质带的一条NNE向剖面大地电磁测深资料的分析解释,获得了关于沿剖面的地壳上地幔二维电性结构,显示北淮阳与大别地块是电性差异显著的构造单元,它们之间的界面与晓天—磨子潭断裂对应;晓天—磨子潭断裂倾向北,在中上地壳层位出现错动解耦现象;从地表向深处可划分出4个主要电性层:地表风化层、中上地壳高阻层、壳内相对高导层以及上地幔层;大别地块内中、上地壳层位以高阻层为主,与高压-超高压变质岩分布区对应,高阻层最厚处在岳西—英山之间;在大别地块内,推测存在燕山期花岗质岩浆活动的通道,它们造成了超高压变质岩的进一步抬升,同时影响了大别地块内存在的壳内相对高导层的分布,壳内相对高导层在层位上相差较大.  相似文献   

5.
在SinoProbe-01项目的资助下,完成了一条跨越鄂尔多斯地块北部、河套断陷盆地和阴山造山带的大地电磁剖面,剖面长约440 km,共包括24个宽频测点和4个宽频一长周期联合测点.采用NLCG算法对TE和TM模式数据进行了二维反演,获得了该剖面的二维电性结构模型.结果表明:鄂尔多斯地块北部由浅至深电性结构比较简单,成层性较好,大体可分为低阻沉积盖层-高阻上地壳-低阻下地壳和上地幔顶部三层;河套断陷盆地和阴山造山带电性结构相对复杂,电阻率高低相间.鄂尔多斯地块北缘、河套断陷盆地以及阴山造山带区域的壳幔高导体可能与硫化物和部分熔融作用有关,而鄂尔多斯地块内部大规模的壳幔高导层可能是由高导矿物引起的.河套断陷盆地的沉降、阴山造山带的地势抬升和鄂尔多斯地块北缘东胜一杭锦旗一带的的隆起之间有着紧密的关系,它们的形成可能与区域伸展构造环境条件下的软流圈物质上涌有关.  相似文献   

6.
在青藏高原东北缘祁连山造山带至阿拉善地块之间完成了一条372km的大地电磁剖面,通过二维反演计算,获得了沿剖面180km深的壳幔电性结构模型,结合研究区地质和地球物理资料开展综合分析,研究结果表明:(1)剖面自南向北所经过的祁连山造山带、走廊过渡带和阿拉善地块对应3种壳幔电性结构模型:东祁连壳幔高-低-高阻似层状电性结构、河西走廊壳幔低阻带状电性结构和阿拉善南缘壳幔高-低-高阻层状电性结构.(2)剖面所经过的主要断裂带在电性结构上表现为低阻异常带或电性梯度带,并且止于中上地壳或消失于下地壳低阻层中.除这些分布于中上地壳的断裂系统以外,在下地壳至上地幔顶部还存在两条切割莫霍面的壳幔韧性剪切带:西华山北缘壳幔韧性剪切带和阿拉善南缘壳幔韧性剪切带.其中,西华山北缘壳幔韧性剪切带可能是1920年海原8.6级地震发生的深部背景之一;而阿拉善南缘壳幔剪切带可能是卫宁北山燕山晚期和喜山期幔源岩浆上升到地壳浅部或喷出到地表的通道,为在该区域寻找晚中生代至新生代含矿隐伏岩体提供了深部电性结构依据.(3)由若干形状不规则、彼此不相连的"碎块状"极高阻块体组成的中上地壳与"似层状"的中下地壳低阻层共同构成的地壳电性结构,是引起青藏高原东北缘强烈破坏性地震最佳的地壳电性结构组合之一.印度板块向欧亚板块俯冲碰撞楔入引起青藏高原块体向北东方向运移与阿拉善地块向南的俯冲碰撞楔入,是青藏高原东北缘强震活动带产生的动力学背景.  相似文献   

7.
海拉尔盆地中-上地壳电性结构特征研究   总被引:2,自引:2,他引:0       下载免费PDF全文
本文通过对横穿海拉尔盆地的一条长约222km的北西—南东向大地电磁测深剖面数据的定性分析及二维定量反演解释,首次获得了海拉尔盆地高精度大范围的电性结构图.海拉尔盆地中-上地壳电性结构纵向上具有典型的分层特性,总体可分为四层,即低阻层-高阻层-低阻层-高阻层,而横向上又具有分块特点.海拉尔盆地边缘及内部分布的众多断裂将盆地划分为隆起与坳陷相间的格局,并发现盆地内部坳陷区也存在有小规模凸起,每一构造单元内部电性结构各具特点.海拉尔盆地中-上地壳低阻层底面最深达28km,通常在6~16km之间,但厚度变化不大,在4~10km之间,且隆起区与坳陷区底面埋深差别较大.据电性结构模型推测出两条新断裂F8和F9,且断裂F9规模较大,为基底断裂.中-上地壳的低阻层可能在一定程度上控制着海拉尔盆地内油气田的分布格局.  相似文献   

8.
本文着重介绍了响水一满都拉断面的深部电性结构特征。在华北地台北缘的构造边界两侧电性差异明显,壳内高导层埋深由21公里跃变到34公里;在南缘的郯庐断裂带及东侧壳内高导层缺失,上地幔出现两个高导层。在华北地台内新生代断陷盆地壳内高导层较为发育,埋藏较浅。上地幔高导层的埋深为60—127公里,总的趋势是西北深,东南浅,在呼包盆地、冀中拗陷和郯庐带下方形成局部上隆区,较好地反映了区域地质以及深部构造运动的特点  相似文献   

9.
本文对一条布设在滇西盈江—龙陵地区的大地电磁剖面(苏典—中山剖面)数据进行了精细处理和二维反演解释,得到了测区较高置信度的二维电性结构.该电性模型纵向上表现为高阻-低阻-高阻的"三明治"式岩石圈电性结构,上地壳为平均厚度约为10km的高阻地层,在约6~16km地壳深度范围发育有电阻率为几欧姆米的显著高导层,下地壳底部和上地幔顶部表现为电性较为均匀的相对高阻层.横向上自西向东划分出以大盈江断裂带、龙陵—瑞丽断裂带为限的3个主要构造区域.壳内分布的高导层沿剖面表现出一定的横向不均匀性,其在龙陵—瑞丽断裂带下方消失,在该处形成了腾冲地块和保山地块的电性构造边界.电性结构表明,大盈江断裂附近高导层顶界面浅,两侧高阻体厚度小,因此难以形成较大规模的相互作用,致其附近浅震源、小震级的地震活跃;龙陵—瑞丽断裂两侧的高阻体较厚,易积累较大的应力,具有大震的深部孕震环境,故其附近发生过多次7级以上强震.  相似文献   

10.
1927年古浪8级大震区及其周边地块的深部电性结构   总被引:13,自引:7,他引:6       下载免费PDF全文
沿穿过古浪大震震中区乐都—武威—白马岗北北东方向约340 km长的剖面,进行了16个测点的大地电磁探测.使用Robust技术处理观测数据,分析了视电阻率、阻抗相位、Swift二维偏离、最佳电性主轴方位角等参数,并采用NLCG二维反演技术对TE和TM两种模式的数据进行了二维反演模拟.结果表明:大通山—大坂山、西海原、皇城—双塔、龙首山和北大山5条断裂为明显的电性边界,其中西海原、皇城—双塔、龙首山和北大山断裂由西南向东北依次变浅变缓并在深部收敛于壳内低阻层上.沿剖面上地壳的电性构造较中下地壳的复杂,上地壳自西南向东北可分为中祁连隆起、北祁连褶皱带、冷龙岭隆起、武威盆地、潮水盆地和北大山隆起6个构造单元样式,显示与地表地质调查一致的构造格局;而在中、下地壳,武威盆地、潮水盆地和北大山隆起为一体,都属于阿拉善地块.中祁连和阿拉善地块电性成层性好,存在西南深、东北浅的壳内低阻层,北祁连褶皱带和冷龙岭隆起带电性结构复杂,高、低电阻体相间.1927年古浪地震震中区西南侧和上方区域的电阻率为高电阻率区,下方和东北侧区域为低电阻率区,处于电性结构明显呈台阶状陡变的地带,表明古浪地震是一次与断坡作用有关的地震.  相似文献   

11.
跨呼和浩特-包头盆地(以下简称"呼包盆地")完成的91.8km长的深地震反射剖面,揭示了呼包盆地的岩石圈精细结构和断裂的深、浅构造特征.结果表明,本区地壳和岩石圈具有清晰的层状反射结构特征,其中,地壳厚度约45~48km,岩石圈厚度约82~87km.莫霍面在大青山之下出现约3.5km的抬升,暗示大青山的隆升不是因为地壳物质增厚所致,即大青山可能不存在"山根".呼包盆地为南浅、北深的"箕状"断陷盆地,盆地沉积层最厚处位于大青山山前,其厚度约为7~8km.鄂尔多斯北缘断裂和大青山山前断裂作为呼包盆地的南、北边界断裂,在剖面上均表现为由3~4条断裂组成的"Y"字形断裂构造,它们对呼包盆地的形成、地层沉积、基底变形和地震活动都有重要的控制作用.剖面揭示的岩石圈深断裂位于大青山山前断裂的下方,该断裂向上进入上地壳,向下切割中-下地壳、莫霍面,进入上地幔.深断裂的存在为深部热物质的上涌与能量强烈交换提供了通道,而上涌的软流层物质与岩石圈地幔发生交代和侵蚀作用导致岩石圈减薄.  相似文献   

12.
The East Kunlun Fault is a giant fault in northern Tibetan, extending eastward and a boundary between the Songpan-Ganzi block and the West Qinling orogenic zone. The East Kunlun Fault branches out into a horsetail structure which is formed by several branch faults. The 2017 Jiuzhaigou MS7.0 earthquake occurred in the horsetail structure of the East Kunlun Fault and caused huge casualties. As one of several major faults that regulate the expansion of the Tibetan plateau, the complexity of the deep extension geometry of the East Kunlun Fault has also attracted a large number of geophysical exploration studies in this area, but only a few are across the Jiuzhaigou earthquake region. Changes in pressure or slip caused by the fluid can cause changes in fault activity. The presence of fluid can cause the conductivity of the rock mass inside the fault zone to increase significantly. MT method is the most sensitive geophysical method to reflect the conductivity of the rock mass. Thus MT is often used to study the segmented structure of active fault zones. In recent years MT exploration has been carried out in several earthquake regions and the results suggest that the location of main shock and aftershocks are controlled by the resistivity structure. In order to study the deep extension characteristics of the East Kunlun Fault and the distribution of the medium properties within the fault zone, we carried out a MT exploration study across the Tazang section of the East Kunlun Fault in 2016. The profile in this study crosses the Jiuzhaigou earthquake region. Other two MT profiles that cross the Maqu section of East Kunlun Fault performed by previous researches are also collected. Phase tensor decomposition is used in this paper to analyze the dimensionality and the change in resistivity with depth. The structure of Songpan-Ganzi block is simple from deep to shallow. The structure of West Qinlin orogenic zone is complex in the east and simple in the west. The structure near the East Kunlun Fault is complex. We use 3D inversion to image the three MT profiles and obtained 3D electrical structure along three profiles. The root-mean-square misfit of inversions is 2.60 and 2.70. Our results reveal that in the tightened northwest part of the horsetail structure, the East Kunlun Fault, the Bailongjiang Fault, and the Guanggaishan-Dieshan Fault are electrical boundaries that dip to the southwest. The three faults combine in the mid-lower crust to form a "flower structure" that expands from south to north. In the southeastward spreading part of the horsetail structure, the north section of the Huya Fault is an electrical boundary that extends deep. The Tazang Fault has obvious smaller scale than the Huya Fault. The Minjiang Fault is an electrical boundary in the upper crust. The Huya Fault and the Tazang Fault form a one-side flower structure. The Bailongjiang and the Guanggaishan-Dieshan Fault form a "flower structure" that expands from south to north too. The two "flower structures" combine in the high conductivity layer of mid-lower crust. In Songpan-Ganzi block, there is a three-layer structure where the second layer is a high conductivity layer. In the West Qinling orogenic zone, there is a similar structure with the Songpan-Ganzi block, but the high conductivity layer in the West Qinling orogenic zone is shallower than the high conductivity layer in the Songpan-Ganzi block. The hypocenter of 2017 MS7.0 Jiuzhaigou earthquake is between the high and low resistivity bodies at the shallow northeastern boundary of the high conductivity layer. The low resistivity body is prone to move and deform. The high resistivity body blocked the movement of low resistivity body. Such a structure and the movement mode cause the uplift near the East Kunlun Fault. The electrical structure and rheological structure of Jiuzhaigou earthquake region suggest that the focal depth of the earthquake is less than 11km. The Huya Fault extends deeper than the Tazang Fault. The seismogenic fault of the 2017 Jiuzhaigou earthquake is the Huya Fault. The high conductivity layer is deep in the southwest and shallow in the northeast, which indicates that the northeast movement of Tibetan plateau is the cause of the 2017 Jiuzhaigou earthquake.  相似文献   

13.
鄂尔多斯盆地西缘构造带北段深部电性结构   总被引:14,自引:9,他引:5       下载免费PDF全文
在横跨鄂尔多斯盆地西缘构造带北段的查甘池—银川—五湖洞约200 km长的东西向剖面上,进行了67个测点的大地电磁探测.使用“远参考道”和Robust技术处理数据.分析了各测点视电阻率、阻抗相位、二维偏离度、电性主轴方位角、磁实感应矢量等参数,采用NLCG二维反演方法对TE和TM两种模式的数据进行了二维反演.得到的二维电性结构表明,沿剖面查汗断裂带、贺兰山东缘断裂带和黄河断裂带是明显较大型电性边界,为超壳断裂带,而三关口断裂带深部延深不大.沿剖面阿拉善地块、贺兰山褶皱带、银川断陷盆地和鄂尔多斯地块具有明显不同的深部电性结构特征.阿拉善地块内部除浅表电阻率较低外,以下到深度约50 km都表现为高电阻特性.贺兰山褶皱带电性结构复杂,电阻率高低相间.银川盆地具有上宽下窄最深达约8 km低阻层,具有断陷盆地特征.鄂尔多斯地块具有低-高-低的深部电性结构特征,成层性较明显.  相似文献   

14.
鄂尔多斯块体定边—大罗山段大地电磁结果表明,鄂尔多斯块体内部电性结构简单,成层性好,上地幔第一高导层顶面埋深基本在109km左右,相当平坦,块体内部不存在壳内高导层。而靠近大罗山处,上地幔第一高导层向上隆起,隆起最高处距地表92km,此处测点壳内有电性分层,但由于断裂带的切割使测点之间的壳内分层不易连接,形成不连续层。分析认为该处为深大断裂带,是鄂尔多斯块体的西部边界  相似文献   

15.
滇西地区地壳上地幔电性结构与地壳构造活动的关系   总被引:46,自引:3,他引:43       下载免费PDF全文
孙洁  徐常芳 《地震地质》1989,11(1):35-45
本文根据滇西地区18个大地电磁测深点资料的数据处理和分析结果,对测区深部导电率在纵、横向上的变化特征进行了研究。结果表明:滇西地区深部电性为多层结构,大致可分四至五个电性结构层;深部电性结构横向变化大,明显受区域构造控制;该区上部地壳内普遍存在低阻层;上地幔高导层明显存在两个隆起区,一个以剑川—鹤庆为中心呈北北西向展布的隆起区,另一个以腾冲—潞西为轴呈南北向展布的隆起区。 本文还讨论了地壳上地幔电性结构与大地构造的关系,滇西北裂陷区盆地的形成,以及该区地震活动与深部构造的关系  相似文献   

16.
本文简介从新疆叶城至西藏狮泉河的大地电磁测深剖面.它北起塔里木盆地,横跨昆仑山脉和喀喇昆仑山脉地区到冈底斯西段,全长800余公里.探测结果表明,不同测点的地壳内部有的有两个低阻层,有的则只有一个低阻层,壳内第1低阻层的埋藏深度约10-35km,第2低阻层的埋藏深度约30-65km。在南昆仑缝合带以南,壳内低阻层的埋藏深度有从南向北不断加深的趋势;而在其以北的壳内低阻层的埋藏深度则与此相反.上地幔第1低阻层的埋藏深度约在100-150km之间,第2低阻层的埋藏深度约在350-550km之间.  相似文献   

17.
河北石家庄地区深部结构大地电磁探测   总被引:8,自引:2,他引:6       下载免费PDF全文
石家庄位于太行山隆起带和华北平原冀中坳陷盆地接触区,西邻太行山山前断裂带,1966年在其东南曾发生邢台7.2级强震.为研究该区的深部构造背景,并为分析地震活动性趋势提供基础资料,2010年10月采用宽频带大地电磁法对该区的深部结构进行探测研究.大地电磁剖面穿过石家庄南侧区域,长约167km,获得了64个测点数据.采用远...  相似文献   

18.
丽江7.0级地震震源环境及其破裂过程讨论   总被引:14,自引:1,他引:14  
本通过对丽江Ms7.0地震发生环境和破裂过程的分析讨论,得到以下认识:丽江地震发生在滇西北裂陷区北部块体内,这是一个由三组深断裂切割包围的三角形断块,断块内发育有裂陷盆地(大具-丽江裂陷盆地);该区除了水平应力作用外,还有很强的来自地幔物质上隆引起的垂直应力作用;主余震分布在地壳一个由相对低速区包围的高速区内。地壳介质结构横向非均匀性-地壳高速块体的存在,可能是丽江地震震源成核的重要成因。丽江7  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号