首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
脆塑性转化带对于研究岩石圈变形、断层强度和变形机制以及强震的孕育和发生具有重要意义。文中采用汶川地震震源区彭灌杂岩中具有代表性的细粒花岗岩样品,在固体压力介质三轴实验系统上开展了高温高压非稳态流变实验研究。实验设计模拟了汶川地震区地壳10~30km深度的实际温度和压力,温度为190~490℃,压力为250~750MPa,应变速率为5×10-4s-1,利用扫描电镜对实验样品进行微观结构观察。实验力学数据、微观结构及变形机制分析表明,在相当于地壳浅部10~15km深处的低温低压条件下,表现为应变强化,样品具有脆性破裂-半脆性流动的变形特征;在相当于地壳15~20km的深度条件下,随着应变量增加,应力趋于稳态,样品具有脆塑性转化特征;在相当于地壳20~30km的深度条件下,样品具有塑性流动特征。当样品处于半脆性域时发生非稳态流变,主要变形机制为碎裂作用,同时激活了动态重结晶作用、位错蠕变等塑性变形机制。样品强度随着深度不断增大,在深度为15~20km时达到极大值,深度为20~30km时强度逐渐减小。因此,花岗岩的强度随深度的变化规律与微观结构及变形机制均表明,在实验温度和压力条件下,花岗岩具有非稳态流变特征,在15~20km深处,龙门山断裂带处于脆塑性转化带,花岗岩强度达到最大值,该深度与汶川地震的成核深度一致,显示出彭灌杂岩的强度和变形对汶川地震的孕育和发生具有控制作用。  相似文献   

2.
本文利用龙门山地区的地质、地球物理剖面、弹性波速和流变实验数据等,建立了汶川地震相关构造单元的地壳流变结构.川西高原和龙门山构造带的地壳流变结构中存在多个塑性流变层,而四川盆地地壳基本没有出现塑性流变层,这种复杂的流变结构是汶川地震孕育和发生的基础.岩石破裂-黏滑-摩擦实验表明,以二长花岗岩为代表的震源区岩石具有很高的破裂强度和摩擦强度,能够承受极大的差应力和积累巨大的能量,这是高角度逆断层能够滑动和汶川地震强度大的原因之一.高流体压力是高角度逆断层滑动和触发汶川地震的另一个必要条件,而龙门山断层带内可能存在这种比较高的流体压力.  相似文献   

3.
综合利用川西流动地震台阵观测数据和震后应急地震观测台站的震相数据,采用双差地震定位方法对汶川地震的余震序列进行了精确重新定位,并对汶川地震的地震构造进行了深入研究.其结果显示,汶川地震序列从彭灌杂岩南缘开始破裂,主震及其余震破裂带长约350 km,在大部分区域宽约20~30 km,其宽度和空间形态沿破裂带显示了强烈的分段和非均匀特征.坚硬的彭灌杂岩对余震的非均匀性分布和汶川地震复杂的破裂过程起到了重要的控制作用.以松潘—甘孜地块中地壳低速层顶部为底边界,余震主要分布在4~24 km深度范围内的龙门山东缘上地壳高速层内.余震深度分布剖面清晰地显示了映秀—北川断裂和灌县—江油断裂以及汶川—茂汶断裂在20~22 km深度合并为剪切带的特征.小鱼洞到理县方向存在一条长度超过60 km的垂直于龙门山走向的余震分布条带,综合震源机制解和地震破裂过程的研究结果,我们推测,这是坚硬的彭灌杂岩体底部在长期应力积累作用下发生破裂的反映,并成为汶川地震释放出巨大能量的主要原因.  相似文献   

4.
汶川Ms8.0地震余震序列重新定位及其地震构造研究   总被引:27,自引:9,他引:18       下载免费PDF全文
综合利用川西流动地震台阵观测数据和震后应急地震观测台站的震相数据,采用双差地震定位方法对汶川地震的余震序列进行了精确重新定位,并对汶川地震的地震构造进行了深入研究.其结果显示,汶川地震序列从彭灌杂岩南缘开始破裂,主震及其余震破裂带长约350 km,在大部分区域宽约20~30 km,其宽度和空间形态沿破裂带显示了强烈的分段和非均匀特征.坚硬的彭灌杂岩对余震的非均匀性分布和汶川地震复杂的破裂过程起到了重要的控制作用.以松潘-甘孜地块中地壳低速层顶部为底边界,余震主要分布在4~24 km深度范围内的龙门山东缘上地壳高速层内.余震深度分布削面清晰地显示了映秀-北川断裂和灌县江油断裂以及汶川-茂汶断裂在20~22 km深度合并为剪切带的特征.小鱼洞到理县方向存在一条长度超过60 km的垂直于龙门山走向的余震分布条带,综合震源机制解和地震破裂过程的研究结果,我们推测,这是坚硬的彭灌杂岩体底部在长期应力积累作用下发生破裂的反映,并成为汶川地震释放出巨大能量的主要原因.  相似文献   

5.
汶川MS8.0地震逆冲滑动量沿断层深度的分布有明显的特点,可以分解成三个破裂的滑动量叠加:深度18 km附近的底部破裂滑动、深度11 km附近的中部破裂滑动和两个局部破裂以外的主体滑动。扣除局部破裂滑动量后,沿断层走向从映秀到南坝近200 km范围内,逆冲滑动量沿断层深度的分布形态是一致的。基于滑动反演几何模型的有限元模拟显示,汶川地震逆冲滑动分布的整体性特征可能源自于断层浅部构造及巴彦喀拉块体SE向挤压强度沿断层走向上的一致性。  相似文献   

6.
王鹏  刘静 《地球物理学报》2014,57(10):3296-3307
大地震破裂大多由横向构造(如阶区、弯曲和分叉)所分割的多个段落组成.2008年5·12汶川地震破裂沿北东走向上穿过了多个横向构造部位,特别在震中北东45 km的位置,小鱼洞断层、北川断层和彭灌断层三者之间呈现复杂的断裂切割相交关系.复杂断层几何结构对破裂的扩展是有抑制还是促进的作用?在相交的断裂段之间是否存在最优的破裂顺序?本文以库仑应力分析为手段,探讨在汶川同震破裂初始30 s内,破裂在多分支断裂中选择扩展路径时的可能应力相互作用.库仑应力分析显示:如果北川断层先发生破裂,其滑动对小鱼洞断层和彭灌断层均产生强烈负应力的抑制作用,而彭灌断层的滑动却反而对小鱼洞断层和北川断层浅部有强烈正应力的促进作用.因此,从准静态应力分析角度,彭灌断层先于北川断层发生破裂的可能性较大,这一破裂顺序与小鱼洞断层参与同震破裂过程的事实相符.此外,小鱼洞断层在链接北川和彭灌断层的同震位移中可能起到桥梁作用,但非静态应力的影响.横向构造在逆冲型地震破裂扩展过程中起到的牵引作用使得逆冲型地震破裂能够比走滑型地震跨越更宽的阶区.横向构造是逆冲断裂带内广泛发育的构成单元,因此在地震危险性分析的最大潜在震级测算中应该考虑其作用.  相似文献   

7.
断裂两盘岩性差异对汶川地震的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
姚琪  邢会林  徐锡伟  张微 《地球物理学报》2012,55(11):3634-3647
岩性差异导致层间变形差异是常见的构造变形现象.龙门山断裂带中段北川—映秀断裂虹口至清平段,断裂上盘为坚硬的前震旦系褶皱基底,下盘则为软弱的前陆盆地沉积物,两者之间具有较大的岩性差异.本文利用基于R-minimum的有限元算法对在一个地震复发间隔内的断层活动进行非线性摩擦接触模拟.计算结果显示,上下盘泊松比的差异则对断层破裂时间及快体变形影响不大,但不同的泊松比条件下断层的破裂过程略有不同,而上下盘杨氏模量的差异能够延迟断层的破裂时间,延长破裂过程,扩大地震复发间隔,且扩大了下盘深度10 km以上和10 km以下地层变形的差异.双断坡构造能够通过深部的应力分解来削弱断层下盘深度10 km以上的变形,但是在上下盘岩性一致的情况下,双断坡构造推迟了主断层的滑动时间,延长了破裂过程,而在强硬上盘和软弱下盘共存的条件下,发育于软弱下盘的次级破裂并不能对主断层的破裂时间和破裂过程造成较大影响.北川—映秀断裂上盘强硬的彭灌杂岩和下盘软弱的含碳沉积地层对汶川地震双断坡式破裂的生成具有重要的促进作用.  相似文献   

8.
以往的研究显示了2013年芦山MS7.0级地震发震断层的隐伏逆冲断层基本特征,但是破裂深部细节差异较大.本文以近场密集的同震形变数据约束芦山地震破裂面几何形状及滑动分布,结果显示芦山地震破裂面具有铲状结构,上部16km为43°~50°高角度断层,深部16~25km为小于27°的低角度断层,破裂深度与重定位的余震分布深度一致.破裂分布模型清楚显示上下两个断层上各有一个滑动幅度大于0.5m的峰值破裂区,最大滑动量1.5m位于13km深处.重定位的余震分布基本都落在最大滑动量等值线外部库仑应力增加的区域.芦山地震破裂面几何形状和滑动分布特征与2008年汶川MS8.0级地震映秀—北川破裂相似,支持龙门山冲断带发育大规模的近水平滑脱层,是青藏高原东缘地壳缩短增厚、龙门山挤压隆升的重要证据.  相似文献   

9.
孟国杰  苏小宁  王振  廖华 《地震》2018,38(2):11-27
联合近场GPS测站1-Hz运动学位移、 强震仪加速度波形和全球台站P震相波形作为约束, 以时空滑动分布约束条件和ABIC模型参数选择方法, 结合先验的滑动方向变化范围, 反演2008年汶川MS8.0地震的震源时空破裂过程, 给出了能够综合反映震源破裂过程的统一模型。 结果表明, 汶川地震总体上存在4个主要的破裂区, 最主要的一个破裂区位于震源东北40~120 km, 断层面上的最大位错量约为10 m, 主体滑动分布在2~20 km深度范围, 破裂达到地表; 第二个主体破裂区位于断层破裂带南段, 最大滑动量达到6 m; 另外2个主体滑动区位于断层破裂带北段, 但滑动破裂量小于断层南段破裂区的滑动量, 滑动破裂值最大值为4 m, 超过1 m的区域在走向上超过70 km。 反演得到的断层滑动模型的地震矩为9.5×1021 Nm, 相应的矩震级为MW7.95。 汶川地震破裂表现为单侧破裂, 起始破裂在汶川下方16 km深度, 向东北方向一致性地传播, 过程持续~120 s。 在地震发生后0~10 s内, 破裂集中在震源起始破裂区, 滑动破裂值为~1.0 m, 之后破裂向东北方向扩展, 震后20~40 s是主要的破裂时段。 在40~60 s, 破裂跨越断层南段和北段。 在80~90 s破裂最大值开始下降, 在100~110 s时, 下降为~0.5 m, 在110~120 s时, 下降为~0.1 m。 加入近场GPS测站1-Hz 波形数据与近场强震仪波形和远场长周期体波联合反演, 提高了震源破裂模型的空间分辨率, 特别是浅部滑动破裂区的分辨率, 反演的最大滑动破裂值比不用1-Hz 波形数据反演的结果增大, 表明近场1-Hz GPS波形数据对于揭示汶川地震的时空破裂过程具有重要的作用。  相似文献   

10.
张媛媛  周永胜 《地震地质》2012,34(1):172-194
野外、实验和地震数据表明:浅部地壳的变形以脆性破裂为主,深部地壳的变形以晶体塑性流动为主.在这种认识的基础上,提出了地壳变形的2种机制模型,即发生脆性变形的上部地壳强度基于Byerlee摩擦定律以及发生塑性变形的下部地壳强度基于幂次蠕变定律.而位于其间的脆塑性转化带的深度与浅源地震深度的下限具有很好的一致性.然而,二元结构的流变模型局限性在于其力学模型过于简单,往往过高估计了脆塑性转化带的强度.问题的根源在于对脆塑性转化带的变形机制的研究已有很多,但没有定量的力学方程来描述脆塑性转化带强度;而且以往对断层脆塑性转化带的研究主要集中在温度引起的脆塑性转化方面,对因应变速率和流体对脆塑性转化的影响方面的研究也比较薄弱.对断层带内矿物变形机制研究表明,某些断层带脆塑性转化发生在相同深度(温度和压力)内,发生脆塑性转化的原因是应变速率的变化,而这种变化被认为与地震周期的同震、震后-间震期蠕变有关,这种变化得到了主震-余震深度分布变化的证实.对断层流体特征分析表明,断层带内可能存在高压流体,这种高压流体会随断裂带的破裂及愈合而周期性变化,在地震孕育及循环中起着关键性作用.高压流体的形成(裂隙愈合)有多种机理,其中,压溶是断层带裂隙愈合的主导机制之一.研究在水作用下的压溶,可以对传统的摩擦-流变二元地壳强度结构及其断层强度进行补充与修正.通过以上分析,认为有必要通过野外变形样品和高温高压实验,深入研究应变速率及流体压力对断层脆塑性转化的影响,同时,通过实验建立压溶蠕变的方程,近似地估计脆塑性转化带的强度.  相似文献   

11.
利用川滇地区长期积累的地震走时观测资料和汶川地震余震观测资料对汶川地震震源区及周边区域地壳和上地幔P波三维速度结构进行了研究.结果表明,浅部P波速度分布与地表地质之间具有很好的对应关系.龙门山断裂带在20 km以上深度表现为高速异常带,彭灌杂岩体和宝兴杂岩体为局部高速异常区.龙门山断裂带中上地壳的局部高速异常体对汶川地震的余震分布具有明显的控制作用.在余震带南端,余震全部发生在与宝兴杂岩体对应的高速异常体的东北侧;在余震带的中段,与彭灌杂岩体对应的高速异常体在一定程度上控制了余震的分布;在余震带的东北端,宁强-勉县一带的高速异常体可能阻止了余震进一步向东北扩展.龙门山断裂带中上地壳的P波高速异常表明介质具有相对较高的强度,在青藏高原物质向东挤出过程中起到了较强的阻挡作用,有利于深部能量积累.在30 km深度之下,扬子地块具有明显的高速特征,其前缘随深度增加向青藏高原方向扩展,在下地壳和上地幔顶部已达到龙门山断裂带以西.  相似文献   

12.
岩石磁化率特征可以帮助判断岩石的形成环境,对地震过程中滑动摩擦伴随高温的物理-化学变化具有显著反应.本研究以钻穿龙门山中段构造带的汶川地震断裂科学钻探2号孔(WFSD-2)岩心为研究对象,使用Bartington MS2K磁化率仪对500~2283.56 m深度的岩心进行高分辨率无损磁化率测试,并结合岩性特征和显微结构探讨了龙门山构造带主要岩石单元的磁化率特征及其地震断裂活动的磁学响应.磁化率测试结果表明,由花岗岩和火山碎屑岩组成的彭灌杂岩体的磁化率值(数十到数千个10~(-6)SI)普遍高于上三叠统须家河组沉积岩的磁化率值(数个到数十个10~(-6)SI).从WFSD-2岩性分布来看,彭灌杂岩上下出露四段,其磁化率值特征反映它们属于不同的岩石单元,它们与下伏须家河组地层呈断层接触,构成叠瓦状构造,指示了龙门山构造带具有强烈的地壳缩短作用.断裂带中处于滑动带的断层泥和假玄武玻璃具有高磁化率特征,而断层角砾岩和碎裂岩不具有高磁化率值特征,表明断层岩磁化率增高的原因可能主要与地震断裂滑动摩擦过程中高温作用下发生的磁性矿物转换有关,断层岩中高磁化率异常可作为大地震活动的证据.WFSD-2岩心中的映秀—北川断裂带(600~960 m)可识别出约80条高磁化率异常的断层岩带,揭示映秀—北川断裂带是一条长期活动的断裂带,龙门山构造带形成演化过程中伴随着大地震活动.  相似文献   

13.
2016年12月—2018年4月间布设于汶川、芦山地震之间地震空段的密集监测台阵(LmsSGA)提供了密集的观测数据.通过拾取地震走时、初始定位,计算地方震级,得到了完备性震级为0级的地震目录.更加完备的地震目录为地震空段及周围地震活动的时空分布特征和孕震风险性评估提供了丰富的信息.重定位结果显示地震主要集中于龙门山断裂带深度为5~20km的孕震层内.地震活动频繁的汶川、芦山主震区,震源的空间分布模式与其早期余震相似,说明两次大地震的区域仍处于缓慢的应力调整阶段.青藏高原物质东向挤出受宝兴、彭灌杂岩阻挡,在两个杂岩体西北侧地震活动频繁.地震活动性分布显示汶川—茂县、映秀—北川断裂上存在一个清晰的长约30km,宽约20km的地震活动"空白"区域,与其下方因部分熔融而产生的低速体分布一致,我们推测熔融体的加温作用是导致空段内极低的地震活动性的主要原因.监测时段内仍观测到降雨变化率和地震数量呈反相关关系,再次证实了汶川—芦山地震间地震空段及邻区内季节性降雨对地震活动性存在一定调节作用.综合分析S波速度模型、历史强震活动及b值,我们推断地震空段东部的彭灌断裂中段及周围部分隐伏断层存在发生强震的风险.  相似文献   

14.
刘建明  李金  姚远  聂晓红  滕海涛 《地震》2020,40(1):52-61
基于新疆区域数字地震台网震相观测报告, 采用双差定位方法对2019年新疆疏附MS5.1地震序列ML≥1.0地震进行重定位, 采用CAP波形反演方法, 获得了主震的震源机制解和震源矩心深度, 进而综合分析了本次地震可能的发震构造。 结果表明, 疏附5.1级地震震源位置为39.59°N, 75.57°E, 初始破裂深度为18 km, 震源矩心深度为18 km。 重定位后的地震序列呈两个优势方向展布, 分别为NEE向和NE向分支, NEE向为主要的余震优势分布区域, 呈长约13 km窄带状分布在喀什断裂附近。 另一条优势分布为沿NE向长度约9 km, 这可能与喀什断裂阶区有关。 深度剖面显示, 地震震源深度主要集中分布在8~20 km。 沿NEE走向深度剖面显示, 疏附5.1级地震破裂于深部, 余震沿优势分布的震源深度自SWW向NEE呈现逐渐加深的变化特征。 垂直于震中优势分布的深度剖面显示, 本次地震发震断层面倾向为N倾。 震源机制解显示本次地震断错类型为逆冲型, 结合震源深度剖面特征推断节面Ⅰ为本次地震的发震断层面。 综合地震序列空间分布特征、 震源机制以及震源区地质资料, 推测此次地震的发震构造可能为喀什断裂, 余震向浅部扩展。  相似文献   

15.
2014年8月3日,云南省昭通-鲁甸地区发生MS6.5级地震,造成了重大的人员伤亡和财产损失.鲁甸震区位于扬子块体的西缘,小江断裂带的东侧北东向的昭通-莲峰断裂带内.由于至今没有穿越该断裂带的人工源深地震测深剖面,而丽江-攀枝花-清镇650 km长深地震测深剖面距离鲁甸主震区不超过50 km,利用宽角地震资料的初至波震相,通过有限差分反演揭示该地区上地壳速度结构,可以为鲁甸震区的地震定位、地震孕育机制等提供深部速度模型.速度剖面显示:剖面结晶基底厚度平均为2 km左右;小江断裂带速度较低,东西两侧的速度较高;因此小江断裂带区域地壳强度比较低,加上断裂两侧的应变速率很高,所以小江断裂带和旁边的鲁甸-昭通断裂带,未来具有发生较大地震的可能,值得关注.  相似文献   

16.
Based on the seismic station data sets from Sichuan and Yunnan provinces, we employed a multi-step seismic location method (Hypo2000 + Velest + HypoDD) to precisely locate the 7,787 earthquakes that occurred during 2010-2015 along the eastern boundaries of the Sichuan-Yunnan rhombic block, namely from southern Dawu to the Qiaojia segment. The final results show that location precision is greatly advanced and epicenter distribution exhibits good consistency with the linear distribution of the seismic faults. Earthquake distribution is quite intensive at the intersection region in the southern segment of the Xianshuihe fault, the Anninghe fault zone, the Xiaojinhe fault zone and the Daliangshan fault zone to the east. The depth profile of seismicity shows a clear stepwise activity along the active seismic fault zones. The profile crossing the faults of the Xianshuihe, Anninghe, and Daliangshan presents a complex interaction among faults near the multiple faults intersection region, Shimian, where the earthquakes are obviously divided into two groups in depth. Earthquakes are very rare at the depth of 15km-20km, which is consistent with the region of the plastic rheology between 14km-19km calculated by Zhu Ailan et al.,(2005).  相似文献   

17.
新疆北天山中东段呼图壁地区震源深度的重新测定   总被引:2,自引:1,他引:1  
联合Hyposat法、PTD法和gCAP矩张量反演法,重新测定新疆北天山中东段呼图壁地区2010—2017年502个地震的震源深度,并对震源深度剖面进行初步分析。结果表明,重新测定的震源深度优势分布为15—20km,平均震源深度为16km,呼图壁MS 6.2地震的震源深度为20km;研究区南部和中部的震源深度集中分布在20km左右,与北天山壳内低速体的层位相当,可能是上地壳和下地壳之间的韧性剪切带存在的部位,起到滑脱层的作用,研究区北部的震源深度则向浅部扩展;呼图壁MS 6.2地震的发震断裂可能在清水河子断裂下方的1条隐伏反冲断层上,可能是霍尔果斯断裂向前沿断坡冲断受阻而在相反方向上发育分支反冲断层的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号