首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper proposes a systematic comparison between two methods of analysis that are well established in the field of earthquake engineering: nonlinear dynamic analysis and nonlinear static procedure (NSP), applied to the out‐of‐plane seismic response of two masonry façades representative of many ancient Italian churches. The comparison is based on extensive numerical analyses, which focus on the flexural and torsional mechanisms, while the in‐plane damage mechanisms and the possible detachment between the façade and the lateral walls because of a poor connection have been presently disregarded. The computations, both in the static and in the dynamic field, are based on a rigid body and spring model specifically implemented for this issue, computationally efficient and equipped with a realistic model of damage and hysteresis at the mesoscale. An innovative aspect of this study is the heuristic modelling of three‐wythe masonry, to include some typical texture effects on the macroscale nonlinear response. For each façade, two different masonry textures were considered, performing extensive dynamic analyses that offered a detailed overview about the performance under earthquakes of different intensities. In parallel, NSP and the classical N2‐based seismic assessment were applied. A critical discussion and comparison of the results of the two methods is presented to rationally appraise limits and opportunities. In particular, flexural and twisting out‐of‐plane mechanisms were clearly appraised in the dynamic field, whereas NSPs were not always able to describe the collapse, because they missed the partial failures determined by higher vibration modes, as could be expected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Seismic shocks occur sometimes as a sequence, close in space and time, of destructive events of comparable intensity. In these cases, a significant portion of the damage to historical buildings can be related with the cumulated damage on structures that become progressively more vulnerable. This research investigates the specific increase of damage determined by a sequence of strong ground motions, focusing the interest on the out‐of‐plane response of 2 church masonry façades. The dynamic analyses were performed by a specific rigid body and spring model RBSM, which only accounts for out‐of‐plane damage mechanisms. Two idealized models of façade, each made of 2 different masonry bonds, have been studied by applying various sequences of recorded accelerograms. The results highlighted a complex relationship between the spectral content of the seismic shocks and the characteristics of the structures that change in the course of the loading sequence due to the development of damage. The Housner spectral intensity proved to be a reliable scalar measure of the ground motion destructiveness for these façades. Moreover, when considering a design‐consistent accelerogram that causes a relevant damage pattern, ie, with a significant elongation of the effective first period of vibration, the numerical results indicated a possible spectral intensity threshold below which the occurrence of repeated seismic shocks, both before and after the reference design shock, can be considered as irrelevant. On the other hand, a catastrophic increase of damage should be expected when this threshold is overcome.  相似文献   

3.
4.
An experimental program was performed for evaluating the seismic response and fragilities of nonstructural lightweight steel drywall partitions, also considering the interaction with structural elements and other nonstructural building components, ie, outdoor façade walls. Therefore, in‐plane quasi‐static reversed cyclic tests were carried out on 8 specimens of indoor partition walls infilled in a frame and on 4 specimens of indoor partition walls connected at its ends with transversal outdoor façade walls. Constructive parameters under investigation include type of connections used for connecting the indoor partition walls to the surrounding elements, stud spacing, type of sheathing panels, and type of jointing finishing. The effect of the constructive parameters on the lateral response in secant stiffness and strength is examined. Furthermore, the main damage phenomena observed during the tests are reported and associated to 3 damage limit states distinguished for the required repair level for the tested partition walls. Fragility curves are used for the experimental assessment of seismic fragility of the tested specimens, in accordance with the interstorey drift limits required by the European code. Finally, the quantitative estimation of the repair action costs starting from the damage observation is also developed. The obtained results could be considered a starting point for developing the in‐plane seismic design assisted by testing of lightweight steel drywall partition walls.  相似文献   

5.
L’Aquila earthquake, which occurred on April 6, 2009, proved the high vulnerability of cultural heritage, with particular reference to churches. Damage assessment in the emergency was carried out on more than 700 churches with a methodology aimed at recognizing the collapse mechanisms in the different architectonic elements of the church. The method was developed after the earthquake in Umbria and the Marches (1997) and has been widely used in the last decade; this approach is also very useful for seismic prevention, as it allows one to single out the most vulnerable structures. Some examples are presented in this paper, representative of recurrent damage in the main elements of the church: the fa?ade, the roof, the apse and the belfry. It emerges that, for a correct interpretation of damage and vulnerability, it is necessary a deep knowledge of local construction techniques and of the historic transformation sequence. Moreover, the bad behaviour of churches strengthened by modern techniques, such as the substitution of original timber roofs with stiff and heavy r.c. slabs, was observed. Starting from the observation of some case studies, the paper achieves some worth results, which may be useful for correctly driving future strengthening interventions.  相似文献   

6.
The evaluation of the out‐of‐plane behaviour of unreinforced walls is one of the most debated topics in the seismic assessment of existing masonry buildings. The discontinuous nature of masonry and its interaction with the remainder of the building make the dynamic modelling of out‐of‐plane response troublesome. In this paper, the results of a shaking table laboratory campaign on a tuff masonry, natural scale, U‐shaped assemblage (façade adjacent to transverse walls) are presented. The tests, excited by scaled natural accelerograms, replicate the behaviour of external walls in existing masonry buildings, from the beginning of rocking motion to overturning. Two approaches have been developed for modelling the out‐of‐plane seismic behaviour: the discrete element method and an SDOF analytic model. Both approaches are shown to be capable of reproducing the experimental behaviour in terms of maximum rotation and time history dynamic response. Finally, test results and numerical time history simulations have been compared with the Italian seismic code assessment procedures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The seismic assessment of the local failure modes in existing masonry buildings is currently based on the identification of the so‐called local mechanisms, often associated with the out‐of‐plane wall behavior, whose stability is evaluated by static force‐based approaches and, more recently, by some displacement‐based proposals. Local mechanisms consist of kinematic chains of masonry portions, often regarded as rigid bodies, with geometric nonlinearity and concentrated nonlinearity in predefined contact regions (unilateral no‐tension behavior, possible sliding with friction). In this work, the dynamic behavior of local mechanisms is simulated through multi‐body dynamics, to obtain the nonlinear response with efficient time history analyses that directly take into account the characteristics of the ground motion. The amplification/filtering effects of the structure are considered within the input motion. The proposed approach is validated with experimental results of two full‐scale shaking‐table tests on stone masonry buildings: a sacco‐stone masonry façade tested at Laboratório Nacional de Engenharia Civil and a two‐storey double‐leaf masonry building tested at European Centre for Training and Research in Earthquake Engineering (EUCENTRE). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, numerical insights on the seismic behavior of a non-isolated historical masonry tower are presented and discussed. The tower under study is the main tower of the fortress of San Felice sul Panaro, a town located near the city of Modena (Italy). Such a tower is surrounded by adjacent structural elements and, therefore, is not isolated. This historical monument has been hit by the devastating seismic sequence occurred in May 2012 in the Northern part of the Emilia region (the so-called “Emilia earthquake”), showing a huge and widespread damage. Here, in order to understand the behavior of the structure, its interaction with the adjacent buildings and the reasons of the occurred damage, advanced numerical analyses (both nonlinear static and dynamic) are performed on a 3D finite element model with different levels of constraint supplied by the adjacent structural elements and a detailed comparison between the simulated damage and the actual one is carried out. The results of the conducted numerical campaign show a good agreement with the actual crack pattern, particularly for the model of the tower that considers the adjacent structural elements.  相似文献   

9.
The out‐of‐plane response of walls in existing stone masonry buildings is one of the major causes of vulnerability commonly observed in post‐earthquake damage surveys. In this context, a shaking table (ST) test campaign was carried out on a full‐scale masonry façade mainly focusing on the characterization of its out‐of‐plane overturning behaviour. The structure tested on the ST is a partial reproduction of an existing building from Azores, damaged during the 9 July 1998 Faial earthquake. The definition of the tested specimen as well as the selection of the input ground motion is reported in this paper. A specific emphasis is given to the definition of the time‐history to be applied during the tests because it was felt as an essential and crucial part of the work to obtain the desired overturning behaviour. The accelerogram to be imposed was selected from a large set of accelerograms (74) by means of a step‐by‐step procedure on the basis of several numerical analyses resorting to the rocking response of rigid blocks. A companion paper (Part 2) focuses on the ST test results and detailed data interpretation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Bulletin of Earthquake Engineering - The out-of-plane collapse of the façade represents one of the major threats and the most frequent cause of damages of churches due to strong earthquakes....  相似文献   

11.
A large mainshock may trigger numerous aftershocks within a short period, and nuclear power plant (NPP) structures have the probability to be exposed to mainshock–aftershock seismic sequences. However, the researchers focused on seismic analyses of reinforced concrete containment (RCC) buildings under only mainshocks. The aim of this paper is to thoroughly investigate the dynamic responses of a RCC building under mainshock–aftershock seismic sequences. For that purpose, 10 as-recorded mainshock–aftershock seismic sequences with two horizontal components are considered in this study, and a typical three-dimensional RCC model subjected to the selected as-recorded seismic sequences is established. Peak ground accelerations (PGAs) of mainshocks equal to 0.3 g (safe shutdown earthquake load-SSE load) are considered in this paper. The results indicate that aftershocks have a significant effect on the responses of the RCC in terms of maximum top accelerations, maximum top displacements and accumulated damage. Furthermore, in order to preserve the RCC from large damage under repeated earthquakes, local damage and global damage indices are suggested as limitations under only mainshocks.  相似文献   

12.
The paper analyses the seismic fragility of precast reinforced concrete buildings using observational damage data gathered after the 2012 Emilia earthquakes that struck Northern Italy. The damage level in 1890 buildings was collected, classified and examined. Damage matrices were then evaluated, and finally, empirical fragility curves were fitted using Bayesian regression. Building damage was classified using a six‐level scale derived from EMS‐98. The completeness of the database and the spatial distribution of the buildings investigated were analysed using cadastral data as a reference. The intensity of the ground motion was quantified by the maximum horizontal peak ground acceleration, which was obtained from ShakeMaps. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
在文献[1]中我们根据砖烟囱的震害证明了水平地震力起决定性作用的传统观点是错误的,实际上是竖向地震力在起主要作用。同时还阐述了砖烟囱出现多条裂缝的破坏机理。本文在文献[1]的基础上对烟囱出现斜缝、错位及破坏截面接近顶端等现象,计算其最大水平地震力及最小竖向地震力以证明上述观点.对出现的多条裂缝,也用计算数字来说明其破坏机理.   相似文献   

14.
A vulnerability analysis of c.300 unreinforced Masonry churches in New Zealand is presented. The analysis uses a recently developed vulnerability index method (Cattari et al. in Proceedings of the New Zealand Society for Earthquake Engineering NZSEE 2015 conference, Rotorua, New Zealand, 2015a; b; SECED 2015 conference: earthquake risk and engineering towards a Resilient World, Cambridge; Goded et al. in Vulnerability analysis of unreinforced masonry churches (EQC 14/660)—final report, 2016; Lagomarsino et al. in Bull Earthq Eng, 2018), specifically designed for New Zealand churches, based on a widely tested approach for European historical buildings. It consists of a macroseismic approach where the seismic hazard is defined by the intensity and correlated to post seismic damage. The many differences in typologies of New Zealand and European churches, with very simple architectural designs and a majority of one nave churches in New Zealand, justified the need to develop a method specifically created for this country. A statistical analysis of the churches damaged during the 2010–2011 Canterbury earthquake sequence was previously carried out to develop the vulnerability index modifiers for New Zealand churches. This new method has been applied to generate seismic scenarios for each church, based on the most likely seismic event for 500 years return period, using the latest version of New Zealand’s National Seismic Hazard Model. Results show that highly vulnerable churches (e.g. stone churches and/or with a weak structural design) tend to produce higher expected damage even if the intensity level is lower than for less vulnerable churches in areas with slightly higher seismicity. The results of this paper provide a preliminary tool to identify buildings requiring in depth structural analyses. This paper is considered as a first step towards a vulnerability analysis of all the historical buildings in the country, in order to preserve New Zealand’s cultural and historical heritage.  相似文献   

15.
2012 Emilia earthquake,Italy: reinforced concrete buildings response   总被引:1,自引:1,他引:0  
Data of the Italian National Institute of Statistics are collected aimed at characterizing Reinforced Concrete (RC) building stock of the area struck by the 2012 Emilia earthquake (number of storeys, age of construction, structural typology). Damage observations, collected right after the event in reconnaissance reports, are shown and analyzed emphasizing typical weaknesses of RC buildings in the area. The evolution of seismic classification for Emilia region and RC buildings’ main characteristics represent the input data for the assessment of non-structural damage of infilled RC buildings, through a simplified approach (FAST method), based on EMS-98 damage scale. Peak Ground Acceleration (PGA) capacities for the first three damage states of EMS-98 are compared with registered PGA in the epicentral area. Observed damage and damage states evaluated for the PGA of the event, in the epicentral area, are finally compared. The comparison led to a fair agreement between observed and numerical data.  相似文献   

16.
A vulnerability analysis of some historical and monumental buildings in the city of Málaga is presented in this paper. More than twenty of these monuments were severely damaged or completely destroyed due to the large earthquake (I max = VIII–IX) occurred in the Málaga region in October 1680. The vulnerability index methodology has been used in this paper. This technique is based on statistical data from seismic damage caused to Italian monuments for the past 30?years. For each building, vulnerability curves have been obtained and damage grades have been estimated. A comparison has been carried out between the expected damage grades and the damage observed from past earthquakes, in order to check the feasibility of applying this methodology to Spanish monuments. This comparison has been possible due to the fact that detailed seismic damage information exists for monuments in the city of Málaga that still exist today, which is a very uncommon case in Spain. Results show a good consistency between expected and observed damage, especially for the churches type. Two seismic scenarios have been proposed for the city centre, one deterministic and one probabilistic, where 54 historical and modern buildings have been analyzed. Both scenarios show worrying results, especially for the types of churches, chapels and towers, where expected high probabilities of suffering very heavy damage or even collapse have been obtained. It is highly recommended to take the necessary measures, in the hope of trying to avoid the possible damage that can be expected from future earthquakes.  相似文献   

17.
18.
Estimates of the earthquake ground motion intensity over a geographical area have multiple uses, that is, emergency management, civil protection and seismic fragility assessment. In particular, with reference to fragility assessment, it is of interest to have estimates of the values of different ground-motion intensity measures in order to correlate them with the observed damage. To this purpose, the present paper uses a procedure recently proposed in the literature to estimate the ground-motion intensity for the 2012 Emilia mainshocks, considering different ground motion intensity measures and directionality effects. Ground motion prediction equations based on different site effect models, and spatial correlation models are calibrated for the Emilia earthquakes. The paper discusses the accuracy of the shakemaps obtained using the different soil effect models considered and presents the obtained shakemaps as supplementary material. The procedure presented in the paper is aimed at providing ground motion intensity values for seismic fragility assessment and is not intended as a tool to estimate shakemaps for rapid emergency assessment.  相似文献   

19.
The Emilia, May–July 2012, earthquake hit a highly industrialized area, where some tens thousands industrial buldings, mainly single storey precast structures, are located. Due to the likelihood of strong after shocks and the high vulnerability of these structures, the authorities first asked for a generalized seismic retrofit after the strong shakings of May 20th. In order to accelerate community recovery, this requirement was later loosened, leaving out the buildings which had undergone a strong enough shaking without any damage; the strong enough shaking was defined with reference to the ultimate limit state design earthquake. To the authors’ knowledge, it is the first time that the information on the earthquake intensity and structural damage is used for such a large scale post earthquake simplified safety assessment. In short, the earthquake was used as large experimental test. This paper shows the details of the models and computations made to identify the industrial buildings which have been considered earthquake tested and therefore not compelled to mandatory seismic retrofit. Since earthquake indirect (e.g. due to economic halt) costs may be as large the direct ones, or even larger, it is believed that this method may considerably lower the earthquake total costs and speed up the social and economic recovery of a community.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号