首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 Introduction Thermal inertia is a bulk property that shows the re- sistance of a material to an input or output of heat. This plays a very important role in certain geological and hydrological studies, and climate modeling. In the 1970s, a simple thermal inertia model was proposed by Watson et al.[1―3]. Pratt (1979)[4] improved the thermal inertia model based on application tests where more factors were considered such as solar ra- diance, thermal conductivity effect, average humidity of g…  相似文献   

2.
As is widely known, there is a severe shortage of water resources in North China. There have been frequent droughts in recent years. Developing water saving measures, especially in agricul-ture, has become an urgent task. In water-saving agriculture, one …  相似文献   

3.
The remote sensing observational study for infrared radiation of rocks was proceeded during the loading on rocks until failure. The major instruments used in experiments were transient spectrum apparatus, intelligent spectrum apparatus, infrared radiation thermometer, infrared spectrum radiometer, and infrared thermal imaging system. The experiments for 26 kinds of rocks were made. The studies show that infrared radiation temperature of rocks increases along with increasing of stress. The amplitude of infrared radiation spectrum of rocks also increases along with increasing of stress. The observational results of infrared thermal imaging of rocks are consistent with infrared radiation temperature. Before formation of major faults for some rocks, the belt-shape thermal imaging of temperature anomaly displaies in position of future major faults. This study has led the new technology of remote sensing into rock mechanics and tend to establish a new field in rock mechanics — remote sensing rock mechanics (or remote sensing rock physics). The application of remote sensing rock mechanics in prediction of earthquake and rock burst, and in measurement of stress field in rock mass is expected. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, Supp., 645–652, 1992. Jin-Shen HAO, Ji-Han LI, Xiao-Hong LIU, Yi-Qiao ZHI, Jin-Kai ZHANG, Yong-Hong Lü, Yi LIU, Yun-Shen YU, He ZHANG, Quan-Quan JI, Xiao-Fan ZHU and Ning CHEN took part in this work. This subject is supported by the Chinese Joint Seismological Science Foundation (91006). Work of Institute of Geophysics, SSB (93A0009).  相似文献   

4.
Abstract

The “thermal inertia” method to retrieve surface soil water content maps on bare or sparsely-vegetated soils is analysed. The study area is a small experimental watershed, where optical and thermal images (in day and night time) and in situ data were simultaneously acquired. The sensitivity of thermal inertia to the phase difference between incoming radiation and soil temperature is demonstrated. Thus, to obtain an accurate value of the phase difference, the temporal distance between thermographs using a three-temperature approach is evaluated. We highlight when a cosine correction of the temperature needs to be applied, depending on whether the thermal inertia formulation includes two generic acquisition times, or not. Finally, the deviation in soil water content retrieval is quantifies for given values of each parameter by performing a sensitivity analysis on the basic parameters of the thermal inertia method that are usually affected by calibration errors.

Citation Maltese, A., Bates, P.D., Capodici, F., Cannarozzo, M., Ciraolo, G., and La Loggia, G., 2013. Critical analysis of thermal inertia approaches for surface soil water content retrieval. Hydrological Sciences Journal, 58 (5), 1144–1161.

Editor D. Koutsoyiannis; Associate editor D. Hughes  相似文献   

5.
The upcoming deployment of satellite-based microwave sensors designed specifically to retrieve surface soil moisture represents an important milestone in efforts to develop hydrologic applications for remote sensing observations. However, typical measurement depths of microwave-based soil moisture retrievals are generally considered too shallow (top 2–5 cm of the soil column) for many important water cycle and agricultural applications. Recent work has demonstrated that thermal remote sensing estimates of surface radiometric temperature provide a complementary source of land surface information that can be used to define a robust proxy for root-zone (top 1 m of the soil column) soil moisture availability. In this analysis, we examine the potential benefits of simultaneously assimilating both microwave-based surface soil moisture retrievals and thermal infrared-based root-zone soil moisture estimates into a soil water balance model using a series of synthetic twin data assimilation experiments conducted at the USDA Optimizing Production Inputs for Economic and Environmental Enhancements (OPE3) site. Results from these experiments illustrate that, relative to a baseline case of assimilating only surface soil moisture retrievals, the assimilation of both root- and surface-zone soil moisture estimates reduces the root-mean-square difference between estimated and true root-zone soil moisture by 50% to 35% (assuming instantaneous root-zone soil moisture retrievals are obtained at an accuracy of between 0.020 and 0.030 m3 m−3). Most significantly, improvements in root-zone soil moisture accuracy are seen even for cases in which root-zone soil moisture retrievals are assumed to be relatively inaccurate (i.e. retrievals errors of up to 0.070 m3 m−3) or limited to only very sparse sampling (i.e. one instantaneous measurement every eight days). Preliminary real data results demonstrate a clear increase in the R2 correlation coefficient with ground-based root-zone observations (from 0.51 to 0.73) upon assimilation of actual surface soil moisture and tower-based thermal infrared temperature observations made at the OPE3 study site.  相似文献   

6.
Introduction Earthquake is not an isolated event. The focal region is not a closed system either. It is able to exchange energy or material with the medium outside this region. These kinds of exchange may cause various physical and chemical effects, so it is possible to get precursory signals by using space remote sensing technology. Many scholars (QIANG, et al, 1990; GENG, et al, 1992; XU, et al, 1995) have carried out some preliminary researches and experiments on the mechanism of therm…  相似文献   

7.
Accurate estimates of seasonal evapotranspiration (ET) at different temporal and spatial scales are essential for understanding the biological and environmental determinants of ecosystem water balance in arid regions and the patterns of water utilization by the vegetation. For this purpose, remote sensing ET estimates of a Patagonian desert in Southern Argentina were verified with field measurements of soil evaporation and plant transpiration using an open top chamber. Root distribution and seasonal variation in soil volumetric water content were also analysed. There was a high correlation between remote sensing and field measurements of ecosystem water fluxes. A substantial amount of the annual ET occurred in spring and early summer (73.4 mm) using winter rain stored in the soil profile and resulting in water content depletion of the upper soil layers. A smaller amount of annual ET was derived from few rainfall events occurring during the mid or late summer (41.4 mm). According to remote sensing, the 92.9% of the mean annual precipitation returns to the atmosphere by transpiration or evaporation from the bare soil and by canopy interception. Only 7.1% infiltrates to soil layers deeper than 200 cm contributing to the water table recharge. Fourier time series analysis, cross‐correlation methods and multiple linear regression models were used to analyse 11 years of remote sensing data to assess determinants of water fluxes. A linear model predicts well the variables that drive complex ecosystem processes such as ET. Leaf area index and air temperature were not linearly correlated to ET because of the multiple interaction among variables resulting in time lags with ET variations and thus these two variables were not included in the linear model. Soil water content, the fraction of photosynthetic active radiation and precipitation explained 86% of the ET monthly variations. The high volumetric water content and the small seasonal variations at 200‐cm depth were probably the result of little water uptake from deeper soil horizons by roots with low hydraulic conductivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
To develop geosciences quantification and multi-dimensional researches will be an inevitable trend in the 21st century. The interaction between the land surface and the atmosphere not only serves as an important component in geosciences quantification, bu…  相似文献   

9.
一些强地震前地表可产生热异常是人们比较一致的认识,但能否用卫星遥感技术观测到地下热异常则存在很大的分歧.本文试图通过分析热红外亮温与大地热流值的关系,探讨利用卫星遥感技术观测地震热异常的可能性及其存在的一些问题.研究结果表明:(1)在绝大多数情况下,亮温随大地热流值的升高而升高,升高的速率平均为0.057℃/mW·m-2.如果地震引起的大地热流异常为100 mW·m-2,则有可能产生卫星红外平均亮温约5.7℃的异常.(2)不同地区亮温随大地热流值变化速率不同,即使地震前出现了卫星热红外亮温异常,但不同地区表现也是不同的.(3)在一些地区一些季节,亮温与大地热流值关系不明显,可能是亮温数据受气象因素干扰所致.这说明地震前的热红外亮温异常是复杂的,甚至有时是难于观测到的.  相似文献   

10.
After carefully studying the results of retrieval of land surface temperature(LST) by multi-channel thermal infrared remote sensing data, the authors of this paper point out that its accuracy and significance for applications are seriously damaged by the high correlation coefficient among multi-channel information and its disablement of direct retrieval of component temperature. Based on the model of directional radiation of non-isothermal mixed pixel, the authors point out that multi-angle thermal infrared remote sensing can offer the possibility to directly retrieve component temperature, but it is also a multi-parameter synchronous inverse problem. The results of digital simulation and field experiments show that the genetic inverse algorithm (GIA) is an effective method to fulfill multi-parameter synchronous retrieval. So it is possible to realize retrieval of component temperature with error less than 1K by multi-angle thermal infrared remote sensing data and GIA.  相似文献   

11.
介绍了卫星热红外遥感技术用于火山监测的国内外研究现状,阐述了热红外遥感技术的原理,分析了卫星热红外遥感技术用于火山活动性监测的可行性。以长白山天池火山为例,基于Landsat TM/ETM影像和ASTER影像反演获得了1999—2008年的温度场,并选取了其中的3种地面覆盖类型(森林植被、土壤和植被(矮草)以及裸露岩石),从而去除了地表环境因素的影响;从每种地面覆盖类型中扣除了当日天池气象站的平均气温,去除了气象因素的影响,得到了由火山热活动可能导致的温度热异常。结果显示,从1999—2005年,由火山活动导致的温度热异常伴随着扰动发生了明显的上升,自2005年以后逐渐下降,2006—2008年趋于稳定。这些结果与测震、GPS形变以及He同位素比值变化趋势保持了较好的一致性,表明卫星热红外遥感技术用于火山活动性监测的巨大潜力和优势,可以作为一种常规的监测手段尝试性地纳入日常的火山监测工作中  相似文献   

12.
伴随着空间观测技术的发展,卫星热红外遥感在地震领域受到越来越多的关注,同时存在许多基础性工作亟待完善.本文以由卫星遥感影像与实际测量两种不同方法获取的地表温度为基础,选取2006年3月~2008年2月近2年的数据,进行遥感与实测地表温度之间的对比研究.分析结果表明遥感与实测地表温度之间:夜间差值比白天要小,白天的相关性...  相似文献   

13.
Earth degassing specifically of carbon dioxide CO2 is of increasing interest with respect to the global carbon budget, related climate effects, earthquake and volcano eruption mechanisms, as well as plant physiological reactions in gas-rich environments. Investigations in all of these disciplines require the detection of surface CO2 degassing structures and quantification of their emissions. We introduce minimal thermal change detection based on infrared imaging as a new remote sensing tool for the detection of earth surface thermal anomalies suiting among others to discover earth degassing locations of any origin. The method allows for seamless areal search and monitoring of degassing structures in any terrain. As proof of concept infrared imaging measurements were performed at the Bossoleto vent on the eastern master fault of the Siena Graben (Tuscany, Italy). It is known for the migration of a large amount of CO2-rich gas from deep geothermal reservoirs. Field data acquired confirmed the qualification of the method. Detection of CO2 degassing locations from infrared image time series worked reliably and optimal detection conditions were identified (dry, calm, cloudless weather between dusk and dawn). A simple model of heat exchange processes involved and observed was developed. In a first attempt this model was applied to determine the gas exit temperature, the area of gas thermal reach and the gas flux from recorded image series. It is the first method that allows remote areal survey of mofette fields and the associated CO2 flux quantification sole from infrared image time series.  相似文献   

14.
Although remote sensing data are often plentiful, they do not usually satisfy the users’ needs directly. Data assimilation is required to extract information about geophysical fields of interest from the remote sensing observations and to make the data more accessible to users. Remote sensing may provide, for example, measurements of surface soil moisture, snow water equivalent, snow cover, or land surface (skin) temperature. Data assimilation can then be used to estimate variables that are not directly observed from space but are needed for applications, for instance root zone soil moisture or land surface fluxes. The paper provides a brief introduction to modern data assimilation methods in the Earth sciences, their applications, and pertinent research questions. Our general overview is readily accessible to hydrologic remote sensing scientists. Within the general context of Earth science data assimilation, we point to examples of the assimilation of remotely sensed observations in land surface hydrology.  相似文献   

15.
红外遥感用于地震预测及其物理机理研究   总被引:15,自引:0,他引:15  
在等温过程加载的条件下,实验得出岩石的红外辐射能量随压力变化显著变化的结果。这个变化与温度无关,完全由压力引起,这就证明了机械能能直接激发岩石分子振动态能级之间的跃迁,不需要经夺石生预测地震奠定了理论基础,这一物理现象的发现,为用红外遥感观测地球表层应力场分布和预测地震奠定了理论基础,提供了实验依据。提出了由温度异常引起的红外辐射能量变化和由应力起的红外辐射能量变化以及将两者分离出发的理论与方法,  相似文献   

16.
本文对玉树地震前后的热异常多参量变化进行分析研究,主要包括长波辐射(Outgoing Longwave Radiation),地表温度(Land Surface Temperature),NCEP地面气温(National Center for Environmental Prediction)和地下水温。研究结果证实玉树地震前确实存在热异常现象。在多参量中,地下水温最早出现异常并且异常持续时间最长;其次出现热异常的是反映地表介质辐射属性的长波辐射;地表温度出现热异常的时间要晚于长波辐射;NCEP地面温度反映了一定垂直厚度的平均大气温度,因此最晚出现热异常现象。同时,玉树地震前的多参量热异常区域都位于震中南部或西南部。  相似文献   

17.
卫星热红外遥感在火山活动性监测中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
屈春燕  单新建  马瑾 《地震地质》2006,28(1):99-110
介绍了卫星热红外遥感在国内外火山监测研究中的应用现状,结合热红外遥感在地震中的应用成果,对利用卫星热红外遥感监测火山活动的可行性及方法进行了探讨,提出通过火山区热红外亮温旬变、月变和年变模型扣除地形地貌、岩性、植被等地表环境因素的影响,通过火山区和邻近参照区红外亮温差值运算扣除气象因素影响的火山活动性热红外异常提取方法。并以长白山火山为例,利用1999、2003和2004年的NOAA卫星影像资料,对长白山火山及周围地区的热红外影像特征进行了分析解译,对长白山火山区与外围参照区的红外亮温年变差异进行了统计分析。结果表明:1)长白山火山区的红外亮温分布特征在空间上主要受地形控制,总体表现为以天池为中心,向外围逐渐升高的漏斗状,天池则是低温背景上的明显高温标记。在时间上,长白山火山区红外亮温的演变过程主要受季节变化的影响,具有明显的夏高冬低年变特征。2)相对于1999年,2003和2004年长白山火山区均显示出明显的升温趋势,升温幅度可达2K左右。我们认为这可能是近年来天池火山活动性逐年增强的反映。这也意味着利用卫星热红外遥感监测火山活动性将是行之有效的新途径,也是值得深入研究的课题  相似文献   

18.
Continuous MODIS/Terra satellite thermal infrared remote sensing data of the Jinggu MS6.6 earthquake area from July 2014 to January 2015 is collected, and after cloud-removing, the thermal infrared data between 5:00a.m.-7:00a.m. Beijing Time, which is the best period for observation, is selected to perform land surface temperature data retrieval and analyze the temporal evolution of land surface temperature anomalies before and after the earthquake, as well as the relationship between abnormal spatial distribution and active fault. The impacts of non-structural factors such as topography, landform and seasonal weather of the earthquake zone on land surface temperature anomalies are discussed. The result shows that: a)there was thermal infrared anomalous temperature increase appearing near the epicenter two months before the MS6.6 Jinggu earthquake and there was a certain correspondence between the anomalous temperature increase and earthquake occurrence time. The significant temperature increase happened in the first half of the month, reached its peak 7 days before the earthquake, and dropped rapidly after the earthquake. At the same time, there was also anomalous temperature increase to a certain extent appearing about half month before the strong aftershocks of magnitude 5.8 and 5.9; b)Through the correlation analysis of non-structural factors such as topography, landform and seasonal weather of the earthquake zone, it is found that the structural "temperature increase" before the Jinggu MS6.6 earthquake was the information indicating the anti-season change of temperature increase in the earthquake zone; c)The anomalous temperature increase was cross-developed from the epicenter along the NS-NE trending conjugate faults, which is consistent roughly with the NNE-SSW predominant direction of the maximum principal stress of the regional tectonic stress field. After full consideration of the influence of non-structural factors such as topography, landform and seasonal weather on the abnormal temperature increase, it is inferred that this thermal infrared temperature increase is possibly a short-imminent anomaly before the earthquake.  相似文献   

19.
地震预报尤其是临震预报,是当今国内外公认的世界性难题,对于这个复杂的问题,需要改变思维模式和探测手段来寻找突破口。笔者认为,在诸多的地震前兆信息中,震前地温突升是比较容易捕捉到的前兆信息之一。依据震前有关地温突升的一些观测事实和卫星热红外遥感能够探测到大震前有热红外异常现象,以及有地温突升必然就伴有地热信息释放的理念,笔者阐述了组建地温观测与卫星热红外观测相结合的新型立体化地热观测系统的必要性和可行性,我国目前现有气象台站2800多个,地震台站1400多个,共计4200多个台站,要统一增设80cm及以下地温观测并纳入到地震观测网。当发现某一地点地温有突升现象时,立刻对该地区上空的卫星热红外遥感资料进行重点分析和研究,从中提取可能的地热异常信息及其分布状况。一是地温观测基本摆脱了地表以上复杂多变的天气变化等干扰信息的影响,二是从周围复杂多变的卫星热红外遥感图像中摆脱出来,转移到有地温突升地区上空的图像中来。  相似文献   

20.
声波与表层土壤水分含量变化的实验研究   总被引:1,自引:1,他引:1       下载免费PDF全文
郭子祺  钱书清 《地震学报》2001,23(5):536-540
为研究地面表层土壤中水分含量变化与震前记录到微震和极微震的关系,进行了声波与表层土壤含水量变化的实验.实验的目的是探讨震前微破裂引起的声波能否改变土壤表层的水分含量,从而建立起遥感图像中的热异常信息与孕震关系.通过实验发现,声波对土壤作用使得原本自然蒸发呈降低趋势的湿度值呈上升趋势,而土壤表面的温度呈下降趋势.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号