首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Observations of periodic components of measured heads have long been used to estimate aquifer diffusivities. The estimations are often made using well-known solutions of linear differential equations for the propagation of sinusoidal boundary fluctuations through homogeneous one-dimensional aquifers. Recent field data has indicated several instances where the homogeneous aquifer solutions give inconsistent estimates of aquifer diffusivity from measurements of tidal lag and attenuation. This paper presents new algebraic solutions for tidal propagation in spatially heterogeneous one-dimensional aquifers. By building on existing solutions for homogeneous aquifers, comprehensive solutions are presented for composite aquifers comprising of arbitrary (finite) numbers of contiguous homogeneous sub-aquifers and subject to sinusoidal linear boundary conditions. Both Cartesian and radial coordinate systems are considered. Properties of the solutions, including rapid phase shifting and attenuation effects, are discussed and their practical relevance noted. Consequent modal dispersive effects on tidal waveforms are also examined via tidal constituent analysis. It is demonstrated that, for multi-constituent tidal forcings, measured peak heights of head oscillations can seem to increase, and phase lags seem to decrease, with distance from the forcing boundary unless constituents are separated and considered in isolation.  相似文献   

2.
A numerical method of analysis is presented for the determination of the steady-state vertical vibration of rigid foundations with arbitrary three-dimensional geometries resting on the surface of a layered soil medium. The method utilizes the flexibility concept applied to steady-state periodic problems and it is solved in the frequency domain. The accuracy of the method is verified by comparison with several published solutions for massless, smooth rigid rectangular foundations on a homogeneous, isotropic elastic half-space. Parametric solutions are presented to study the dynamic behaviour of massless, smooth rigid rectangular foundations on a homogeneous, elastic stratum.  相似文献   

3.
Computation of magnetic gradients due to three-dimensional bodies   总被引:3,自引:0,他引:3  
Thc expressions of magnetic gradients due to 3-D homogeneous magnetized polyhedra are systematically derived and presented, fronr which the forward problem of magnetic gradients of an arbitrary shaped geological body is solved. It is shown that in the rotation of coordinate systems there is an essential difference between the transformation of magnetic fields and that of their gradients. In a 2-D coordinate system a unified transformation formula of any order gradients can he derived, hut cannot in the 3-D case. The calculations of synthetic models show the correctness of the expressioils or magnetic gradients. Project supported by the National Natural Science Foundation of China.  相似文献   

4.
Summary In a coordinate system in which the ground is always a coordinate surface, climatic equations for axially asymmetric and symmetric atmospheric motions are derived. These are compared with their counterparts in the pressure coordinate system. Some qualitative predictions regarding solutions are given.  相似文献   

5.
兰海强  张智  徐涛  白志明 《地球物理学报》2012,55(10):3355-3369
笛卡尔坐标系中的经典程函方程在静校正、叠前偏移、走时反演、地震定位、层析成像等很多地球物理工作中都有应用,然而用其计算起伏地表的地震波走时却比较困难.本文通过把曲线坐标系中的矩形网格映射到笛卡尔坐标系的贴体网格,推导出曲线坐标中的程函方程,而后,用Lax-Friedrichs快速扫描算法求解曲线坐标系的程函方程.研究表明本文方法能有效处理地表起伏的情况,得到准确稳定的计算结果.由于地表起伏,导致与之拟合的贴体网格在空间上的展布呈各向异性,且这种各向异性的强弱对坐标变换法求解地震初至波的走时具有重要影响.本文研究表明,随着贴体网格的各向异性增强,用坐标变换法求解地表起伏区域的走时计算误差增大,且计算效率降低,这在实际应用具有指导意义.  相似文献   

6.
由多个震源机制解分析甘肃及边邻地区应力场特征   总被引:1,自引:0,他引:1  
基于震源断层面解的空间取向和断层滑动方向,由相应力轴张量在地理坐标系中的表达式,通过坐标旋转、代数平均可求得多个震源机制解的P、B、T轴参数的平均应力场。据甘肃及边邻地区的分区活动特征,将研究地区分为8个小区域,由各个区域内多个地震震源机制解,采用力轴张量计算法,得到了各个区应力张量的定量分析结果。  相似文献   

7.
The use of arctangents rather than arcsines in the expression for the gravitational attraction of a homogeneous rectangular prism reduces computational difficulties. Once a subroutine is available to compute one component of attraction in a Cartesian coordinate system, the other components may be obtained by cyclic permutation of the field point and body coordinate parameters. This technique also readily provides derivatives of the gravitational attraction and hence forms a compact method for the calculation of a magnetic anomaly due to a homogeneous rectangular magnetic prism.  相似文献   

8.
A finite-element method for computing the electric field in a 3-D conductivity model of the Earth for plane wave sources, thus enabling magnetotelluric responses to be calculated, is presented. The method incorporates in the iterative solution of the electric-field system of equations the divergence correction technique introduced for finite-difference solutions by Smith (1996). The correction technique accelerates the development of the discontinuity of the normal component of the approximate electric field across conductivity discontinuities. The convergence rate of the iterative solution is improved significantly, especially for low frequencies. The correction technique involves computing the divergence of the current density for the approximate electric field, computing the static potential whose source is this divergence of the current density, and ‘correcting’ the approximate electric field by subtracting from it the gradient of the potential. This is repeated at regular intervals during the iterative solution of the electric-field system of equations. For the method presented here, the Earth model is discretised using a rectilinear mesh comprising uniform cells. Edge-element basis functions are used to approximate the electric field and nodal basis functions are used to approximate the correction potential. The Galerkin method is used to derive the systems of equations for the approximate electric field and correction potential from the respective differential equations. A bi-conjugate gradient solver was found to be adequate for the system of equations for the correction potential; a generalised minimum residual solver was found to be better for the electric-field system of equations. The method is illustrated using the COMMEMI 3D-1A and 3D-2A models.  相似文献   

9.
Laplace transform step-response functions are presented for various homogeneous confined and leaky aquifer types and for anisotropic, homogeneous unconfined aquifers interacting with perennial streams. Flow is one-dimensional, perpendicular to the stream in the confined and leaky aquifers, and two-dimensional in a plane perpendicular to the stream in the water-table aquifers. The stream is assumed to penetrate the full thickness of the aquifer. The aquifers may be semi-infinite or finite in width and may or may not be bounded at the stream by a semipervious streambank. The solutions are presented in a unified manner so that mathematical relations among the various aquifer configurations are clearly demonstrated. The Laplace transform solutions are inverted numerically to obtain the real-time step-response functions for use in the convolution (or superposition) integral. To maintain linearity in the case of unconfined aquifers, fluctuations in the elevation of the water table are assumed to be small relative to the saturated thickness, and vertical flow into or out of the zone above the water table is assumed to occur instantaneously. Effects of hysteresis in the moisture distribution above the water table are therefore neglected. Graphical comparisons of the new solutions are made with known closed-form solutions.  相似文献   

10.
An integral equation method is described for solving the potential problem of a stationary electric current in a medium that is linear, isotropic and piecewise homogeneous in terms of electrical conductivity. The integral equations are Fredholm's equations of the ‘second kind’ developed for the potential of the electric field. In this method the discontinuity-surfaces of electrical conductivity are divided into ‘sub-areas’ that are so small that the value of their potential can be regarded as constant. The equations are applied to 3-D galvanic modeling. In the numerical examples the convergence is examined. The results are also compared with solutions derived with other integral equations. Examples are given of anomalies of apparent resistivity and mise-a-la-masse methods, assuming finite conductivity contrast. We show that the numerical solutions converge more rapidly than compared to solutions published earlier for the electric field. This results from the fact that the potential (as a function of the location coordinate) behaves more regularly than the electric field. The equations are applicable to all cases where conductivity contrast is finite.  相似文献   

11.
将模态叠加法应用于刚性基岩上、受竖直向上传播的稳态剪切地震波激振下剪切刚度沿深度按指数规律增长的单层非匀质场地土模型的地震反应分析,求得有效振型参与系数的解.在算例分析中将此类非匀质场地与剪切波速取为平均值的匀质场地的有效振型参与系数进行了比较,并验证了第一阶固有频率的工程估算式仍可用于此类非匀质场地,且其对估算高阶固有频率是个很重要的参数.  相似文献   

12.
An exact stiffness matrix method is presented to evaluate the dynamic response of a multi-layered poroelastic medium due to time-harmonic loads and fluid sources applied in the interior of the layered medium. The system under consideration consists of N layers of different properties and thickness overlying a homogeneous half-plane or a rigid base. Fourier integral transform is used with respect to the x-co-ordinate and the formulation is presented in the frequency domain. Fourier transforms of average displacements of the solid matrix and pore pressure at layer interfaces are considered as the basic unknowns. Exact stiffness (impedance) matrices describing the relationship between generalized displacement and force vectors of a layer of finite thickness and a half-plane are derived explicitly in the Fourier-frequency space by using rigorous analytical solutions for Biot's elastodynamic theory for porous media. The global stiffness matrix and the force vector of a layered system is assembled by considering the continuity of tractions and fluid flow at layer interfaces. The numerical solution of the global equation system for discrete values of Fourier transform parameter together with the application of numerical quadrature to evaluate inverse Fourier transform integrals yield the solutions for poroelastic fields. Numerical results for displacements and stresses of a few layered systems and vertical impedance of a rigid strip bonded to layered poroelastic media are presented. The advantages of the present method when compared to existing approximate stiffness methods and other methods based on the determination of layer arbitrary coefficients are discussed.  相似文献   

13.
The seismic response of inhomogeneous soil deposits is explored analytically by means of one-dimensional viscoelastic wave propagation theory. The problem under investigation comprises of a continuously inhomogeneous stratum over a homogeneous layer of higher stiffness, with the excitation defined in terms of vertically propagating harmonic S waves imposed at the base of the system. A generalized parabolic function is employed to describe the variable shear wave propagation velocity in the inhomogeneous layer. The problem is treated analytically leading to an exact solution of the Bessel type for the natural frequencies, mode shapes and base-to-surface response transfer function. The model is validated using available theoretical solutions and finite-element analyses. Results are presented in the form of normalized graphs demonstrating the effect of salient model parameters such as layer thickness, impedance contrast between surface and base layer, rate of inhomogeneity and hysteretic damping ratio. Equivalent homogeneous soil approximations are examined. The effect of vanishing shear wave propagation velocity near soil surface on shear strains and displacements is explored by asymptotic analyses.  相似文献   

14.
曲线坐标系程函方程的求解方法研究   总被引:3,自引:2,他引:1       下载免费PDF全文
笛卡尔坐标系中经典的程函方程在静校正、叠前偏移、走时反演、地震定位、层析成像等许多地球物理工作都有应用,然而用其计算起伏地表的地震波走时时却比较困难.我们通过把曲线坐标系中的矩形网格映射到笛卡尔坐标系的贴体网格推导出了曲线坐标中的程函方程,此时,曲线坐标系的程函方程呈现为各向异性的程函方程(尽管在笛卡尔坐标系中介质是各向同同性的).然后尝试用求解各向同性程函方程的快速推进法和Lax-Friedrichs快速扫描算法来分别求解该方程.数值试验表明未加考虑各向异性程函方程与各向同性程函方程的差别而把求解各向同性程函方程的快速推进法直接拓展到曲线坐标中的程函方程的做法是错误的,而Lax-Friedrichs快速扫描算法总能稳定地求解曲线坐标系的程函方程,进而有效地处理了地表起伏的情况,得到稳定准确的计算结果.  相似文献   

15.
椭圆形柱体地震动水压力的简化分析方法   总被引:1,自引:1,他引:0  
首先,文章基于辐射波浪理论,在椭圆坐标系下采用分离变量法推导了水中椭圆形柱体地震动水压力的解析解。之后,采用有限元方法建立了地震作用下水与结构相互作用的动力方程,方程中水体对结构的作用为一满阵的附加质量矩阵。满阵的附加质量矩阵难以在商业有限元中实现,因此提出了集中的附加质量矩阵方法,其中结构柔性引起的附加质量为集中附加质量矩阵和修正系数的乘积,该修正系数与无量纲参数宽深比和长短轴比相关。最后,通过曲线拟合,提出了刚性椭圆柱体动水力的均布附加量简化公式,该简化公式是无量纲参数宽深比和长短轴比的函数。  相似文献   

16.
Here we introduce generalized momentum and coordinate to transform seismic wave displacement equations into Hamiltonian system. We define the Lie operators associated with kinetic and potential energy, and construct a new kind of second order symplectic scheme, which is extremely suitable for high efficient and long-term seismic wave simulations. Three sets of optimal coefficients are obtained based on the principle of minimum truncation error. We investigate the stability conditions for elastic wave simulation in homogeneous media. These newly developed symplectic schemes are compared with common symplectic schemes to verify the high precision and efficiency in theory and numerical experiments. One of the schemes presented here is compared with the classical Newmark algorithm and third order symplectic scheme to test the long-term computational ability. The scheme gets the same synthetic surface seismic records and single channel record as third order symplectic scheme in the seismic modeling in the heterogeneous model.  相似文献   

17.
Particular solutions to the problem of horizontal flow of water and air through homogeneous porous media are derived and regularity properties of the solutions are presented. It is found that a singularity occurs in the solutions at the wetting fronts. Effects of air flow on water flow are discussed.  相似文献   

18.
Steady free-surface seepage in a homogeneous porous aquifer is studied by a conformal mapping of the inversed hodograph (angle) onto the domain in the Riesenkampf plane (slanted-face half-strip or trapezium). Seepage from the water table is caused by evaporation uniformly distributed with a horizontal coordinate. This distributed sink forms a regional trough on the phreatic surface with groundwater moving from the flanks to the trough center on the regional scale and from the water table to the soil surface locally. The free surfaces, streamlines of marked particles, travel times, and Darcian velocity are presented.  相似文献   

19.
Summary Some exact solutions are presented for the unsteady boundary layer flows of a homogeneous, viscous, incompressible fluid bounded by (i) an infinite rigid oscillating flat plate or (ii) two parallel rigid oscillating flat plates. An explicit representation of the velocity fields for both the configurations has been given. The structures of the associated periodic boundary layers are determined with physical interpretations. Several results of interest have been recovered as special cases of this general theory. The Heaviside operational calculus along with the theory of residues of analytic functions is adopted in finding the solutions.  相似文献   

20.
A convection-diffusion equation arises from the conservation equations in miscible and immiscible flooding, thermal recovery, and water movement through desiccated soil. When the convection term dominates the diffusion term, the equations are very difficult to solve numerically. Owing to the hyperbolic character assumed for dominating convection, inaccurate, oscillating solutions result. A new solution technique minimizes the oscillations. The differential equation is transformed into a moving coordinate system which eliminates the convection term but makes the boundary location change in time. We illustrate the new method on two one-dimensional problems: the linear convection-diffusion equation and a non-linear diffusion type equation governing water movement through desiccated soil. Transforming the linear convection diffusion equation into a moving coordinate system gives a diffusion equation with time dependent boundary conditions. We apply orthogonal collocation on finite elements with a Crank-Nicholson time discretization. Comparisons are made to schemes using fixed coordinate systems. The equation describing movement of water in dry soil is a highly non-linear diffusion-type equation with coefficients varying over six orders of magnitude. We solve the equation in a coordinate system moving with a time-dependent velocity, which is determined by the location of the largest gradient of the solution. The finite difference technique with a variable grid size is applied, and a modified Crank-Nicholson technique is used for the temporal discretization. Comparisons are made to an exact solution obtained by similarity transformation, and with an ordinary finite difference scheme on a fixed coordinate system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号