首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
A series of dynamic experiments was performed on two‐story glue‐laminated timber frames. The tests included sinusoidal sweeps in one direction, arbitrary signals simulating earthquake loads in two directions, and harmonic free vibration at the fundamental frequency. Two experimental frames were manufactured and tested: (1) a control with horizontal laminations and no reinforcement at joint areas, and (2) a new frame design with densified material in the joint area that was further reinforced by glass‐fiber composite material. Preliminary tests of scaled and full‐size beam‐to‐column connections were performed to obtain connection characteristics needed for subsequent analytical modeling. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
In the analysis and design of unbraced steel frames various models are employed to represent the behaviour of beam-to-column connections. In one such model, termed here as ‘Simple Construction’, pinned connections are assumed when resisting gravity loads, whereas the same connections are assumed to be moment-resistant rigid connections when resisting lateral loads due to an earthquake or wind. Such connections are designed for moments due to lateral loads only; thus, they are not only flexible but may yield when the gravity and lateral loads act concurrently. This paper establishes the seismic performance of two (one 5-storey and the other 10-storey) unbraced steel building frames designed based on the ‘Simple Construction’ technique and on limit state principles. The first part of the paper describes briefly the design of such frames and compares their static responses with the corresponding responses of frames designed based on the ‘Continuous Construction’ assumption. Using realistic moment-rotation behaviour for flexible beam-to-column connections and realistic member behaviour, the non-linear dynamic responses of such frames for the 1940 El Centro record and 2 times the 1952 Taft record have been established using step-by-step time-history analyses. Floor lateral displacement envelopes, storey shear envelopes and cumulative inelastic rotations of beams, columns and connections are presented. The results indicate that the ‘Simple Construction’ frames experience larger lateral deflections while attracting lesser storey shears. During a major earthquake, the columns and connections of the ‘Simple Construction’ frames experience yielding, whereas in ‘Continuous Construction’ frames the beams and columns experience yielding. The cyclic plastic rotations in the connections and in the columns associated with ‘Simple Construction’ frames are found to be considerably higher.  相似文献   

3.
A design study has been conducted to explore the use of structural cladding panels with energy-dissipating cladding-to-frame connections for seismic-resistant design. The study identifies several issues involved in the modelling and analysis of frames with energy-dissipating cladding-to-frame connections, establishes concepts for design, and provides a preliminary assessment of the force and deformation demands that are likely to be placed on panels and connections. Non-linear dynamic analyses indicate that the clad frames perform well, based on observations about maximum interstorey drifts, maximum plastic hinge rotations in the frames, and maximum ductility demands on the cladding-to-frame connections.  相似文献   

4.
An assessment of seismic demands and capacities of welded column splice (WCS) connections in steel moment frames is presented. For demand assessment, nonlinear dynamic analyses are conducted for two case‐study buildings, that is, a 4‐story and a 20‐story moment frame. Results from the nonlinear dynamic analyses are assessed through a probabilistic seismic demand analysis (PSDA) framework to characterize recurrence rates of longitudinal flange stress in these connections. The PSDA is applied in two contexts. First, in the context of WCS connections constructed prior to the M 6.7 1994 Northridge earthquake, the PSDA is combined with sophisticated finite element‐based fracture mechanics analysis to compute the mean annual frequencies of fracture in these connections. The pre‐Northridge WCS are especially critical because they feature partial joint penetration and brittle materials that compromise their resistance to fracture. The analysis indicates that the mean annual frequencies of fracture in these connections may be unacceptably high for both the 4‐story and the 20‐story frames. This warrants a serious and urgent consideration of retrofit strategies. These findings are attributed to the brittleness of the pre‐Northridge splices (as indicated by the fracture mechanics simulations), as well as the force‐controlled nature of these components, wherein low‐intensity ground motions contribute disproportionately to fracture risk, as evidenced by fracture risk disaggregation. Second, in the context of new construction, the PSDA provides meaningful stress magnitudes for design. Currently, WCS connections employ complete joint penetration welds with the intent to develop the smaller column flange in yielding. The PSDA conducted in this study suggests that this requirement may be too stringent because stress demands in the splices corresponding even to high return periods (e.g., 2475 years) are significantly lower (~40 ksi), as compared with the stress required to yield the column (~55 ksi). Limitations of the study are outlined. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents the results of a probabilistic evaluation of the seismic performance of 3D steel moment‐frame structures. Two types of framing system are considered: one‐way frames typical of construction in the United States and two‐way frames typical of construction in Japan. For each framing system, four types of beam–column connections are considered: pre‐Northridge welded‐flange bolted‐web, post‐Northridge welded‐flange welded‐web, reduced‐beam‐section, and bolted‐flange‐plate connections. A suite of earthquake ground motions is used to compute the annual probability of exceedence (APE) for a series of drift demand levels and for member plastic‐rotation capacity. Results are compared for the different framing systems and connection details. It is found that the two‐way frames, which have a larger initial stiffness and strength than the one‐way frames for the same beam and column volumes, have a smaller APE for small drift demands for which members exhibit no or minimal yielding, but have a larger APE for large drift demands for which members exhibit large plastic rotations. However, the one‐way frames, which typically comprise a few seismic frames with large‐sized members that have relatively small rotation capacities, may have a larger APE for member failure. The probabilistic approach presented in this study may be used to determine the most appropriate frame configuration to meet an owner's performance objectives. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The coupled steel plate shear wall (C-SPSW) configuration has been investigated by researchers as a means of improving the overturning stiffness and architectural flexibility of SPSW structures. While C-SPSWs have been shown to exhibit excellent seismic performance, the fabrication cost associated with the high number of moment-resisting connections used in such systems is a potential detraction to their use as an economical solution. Past research has shown that the hysteresis response of SPSWs with simple frame connections is significantly pinched, and as such, most seismic codes prohibit their use in high seismic areas. However, when used in the C-SPSW configuration, a dual system is formed in which the coupling beams not only improve resistance to overturning but also provide substantial lateral strength and energy dissipation capacity. This paper presents an exploration of the potential to improve the economy of C-SPSWs by using the simple boundary frame connections. First, employing the principles of plastic analysis, an attempt is made to quantify the contribution of the coupling beams to the overall lateral load resistance of the system. Then, to evaluate the seismic performance of such C-SPSW systems and allow for the comparison with that of the C-SPSWs with rigid frames, several prototypes are designed and analyzed using a series of nonlinear response history and pushover analyses. The results indicated that the C-SPSWs with simple boundary frames exhibited satisfactory seismic performance comparable with that of the C-SPSWs with rigid frames under both the 10/50 and 2/50 hazard levels, while allowing for reduced fabrication costs.  相似文献   

7.
Cross concentrically braced frames (X-CBFs) are commonly used as primary seismic resisting system, owing to their large lateral stiffness, simplicity of design, and relatively low constructional cost. Current EN 1998-1 provides design rules theoretically aiming at developing ductile global plastic mechanism, namely enforcing plastic deformations in the diagonal members, while the remaining structural members and connections should elastically behave. However, as widely demonstrated by many existing studies, the design and the corresponding seismic performance of EC8-compliant X-CBFs are generally affected by several criticisms, eg, difficulties in sizing of diagonal members, massive and non-economical structures, and poor seismic behavior. In light of these considerations, the research activity presented in this paper is addressed to revise the design rules and requirements given EN 1998-1 for X-CBFs to simplify the design process and to improve the ductility and the dissipative capacity of this structural system. Hence, design rules are proposed for the next version of EN 1998-1 and numerically validated by means of nonlinear dynamic analyses.  相似文献   

8.
Past seismic events, including the 2009 L’Aquila earthquake and the 2012 Emilia earthquake, clearly demonstrated the inadequacy of the current design approach for the connection system of the cladding wall panels of precast buildings. To clarify this problem the present paper investigates the seismic behaviour of a traditional precast structural frame for industrial buildings with a new type of connection system of cladding panels. This system consists of a statically determined pendulum arrangement of panels, each supported with two hinges to the structure, one at the top and one at the bottom, so to have under seismic action a pure frame behaviour where the wall panels are masses without stiffness. Adding mutual connections between the panels, the wall cladding panels become part of the resisting structure, leading to a dual frame/wall system or to a wall system depending on the stiffness of the connections. The seismic behaviour of this structural assembly is investigated for different degrees of interaction between frame and panels, as well as for an enhanced solution with dissipative connections. The results of nonlinear static (pushover) analyses and nonlinear dynamic analyses under recorded and artificial earthquakes highlight the role of the wall panel connections on the seismic behaviour of the structural assembly and show the effectiveness of the dual frame/wall system with dissipative connections between panels.  相似文献   

9.
A new type of beam-to-column connection for steel moment flames, designated as a "self-centering connection," is studied. In this connection, bolted top-and-seat angles, and post-tensioned (PT) high-strength steel strands running along the beam are used. The PT strands tie the beam flanges on the column flange to resist moment and provide self-centering force. After an earthquake, the connections have zero deformation, and can be restored to their original status by simply replacing the angles. Four full-scale connections were tested under cyclic loading. The strength, energy-dissipation capacity, hysteresis curve, as well as angles and PT strands behavior of the connections are investigated. A general FEM analysis program called ABAQUS 6.9 is adopted to model the four test specimens. The numerical and test results match very well. Both the test and analysis results suggest that: (1) the columns and beams remain elastic while the angles sustain plastic deformations for energy dissipation when the rotation of the beam related to the column equals 0.05 tad, (2) the energy dissipation capacity is enhanced when the thickness of the angle is increased, and (3) the number of PT strands has a significant influence on the behavior of the connections, whereas the distance between the strands is not as important to the performance of the connection.  相似文献   

10.
Two‐story, three‐bay reinforced concrete (RC) frames with and without internal steel frame (ISF) retrofits were tested using continuous pseudo dynamic test method. The ISFs were installed to the middle bay of the RC frame. Test results indicated that ISF retrofit was beneficial in resisting deformation demands without significant damage under simulated ground motions. The ISF shifted the failure mode of the system from a brittle to a ductile mode. The test results were compared with the results of the nonlinear time history analysis. The analysis results were capable of tracing the overall behavior of global response parameters; however, estimations of local demand parameters were less accurate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号