首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
GPS data from Crustal Movement Observation Network of China (CMONOC) are used to derive far-field co-seismic displacements induced by the Mw 9.0 Tohoku Earthquake. Significant horizontal displacements about 30 mm, 10 mm, and 20 mm were caused by this large event in northeast China, north China, and on the Korean peninsula respectively. Vectors of relatively large horizontal displacements with dominant east components pointed to the epicenter of this earthquake. The east components show an exponential decay with the longitude, which is characteristic of the decay of the co-seismic horizontal displacements associated with earthquakes of thrust rupture. The exponential fit of the east components shows that the influence of the co-seismic displacements can be detected by GPS at a distance of about 3200 km from the epicenter of the earthquake. By considering the capability of the far field displacements for constraining the inversion of the fault slip model of the earthquake, we use spherically stratified Earth models to simulate the co-seismic displacements induced by this event. Using computations and comparisons, we discuss the effects of parameters of layered Earth models on the results of dislocation modeling. Comparisons of the modeled and observed displacements show that far field GPS observations are effective for constraining the fault slip model. The far field horizontal displacements observed by GPS are used to modify the slips and seismic moments of fault slip models. The result of this work is applicable as a reference for other researchers to study seismic source rupture and crustal deformation.  相似文献   

2.
We invert measurements of coseismic displacements from 139 continuously recorded GPS sites from the 2010, Jiashian, Taiwan earthquake to solve for fault geometry and slip distribution using an elastic uniform stress drop inversion. The earthquake occurred at a depth of ~ 23 km in an area between the Western Foothills fold-and-thrust belt and the crystalline high mountains of the Central Range, providing an opportunity to examine the deep fault structure under Taiwan. The inferred rupture plane is oblique to the prominent orientation of thrust faults and parallel to several previously recognized NW-striking transfer zones that appear to connect stepping thrusts. We find that a fault striking 318°–344° with dip of 26°–41° fits the observations well with oblique reverse-sinistral slip under a low stress drop of about 0.5 MPa. The derived geodetic moment of 2.92 × 1018 N-m is equivalent to a Mw = 6.24 earthquake. Coseismic slip is largely concentrated within a circular patch with a 10-km radius at the depth between 10 and 24 km and maximum slip of 190 mm. We suggest this earthquake ruptured the NW-striking Chishan transfer fault zone, which we interpret as a listric NE-dipping lateral ramp with oblique slip connecting stepping thrust faults (ramps). The inferred slip on the lateral ramp is considerably deeper than the 7–15 km deep detachment identified in previous studies of western Taiwan. We infer an active basal detachment under western Taiwan at a depth of at least ~ 20–23 km based on these inversion results. The earthquake may have nucleated at the base of the lateral ramp near the intersection with the basal detachment. Coulomb stress change calculations suggest that this earthquake moved several NE-striking active thrust faults in western Taiwan nearer to failure.  相似文献   

3.
We developed a new approach for computing the changes in the length of day (LOD) due to earthquakes from both shear- and tensile-type faults. This approach was based on the point dislocation theory for a SNREI Earth, which was validated by comparing our results with the ones obtained by the normal mode method. We defined two numerical functions that vary with hypocenter depth. These functions allow us to compute the co-seismic change of the trace of the Earth's inertia tensor, and hence the co-seismic LOD change. For future applications, by adding a trace term, we corrected Lambeck's formulas (Lambeck, 1980), which are being commonly used for computing co-seismic LOD change. Finally, the new approach was used to compute the co-seismic LOD change from 1977 to 2011. The results show that the co-seismic trace and the co-seismic J2 changes contribute to the LOD change with the same magnitude (Gross and Chao, 2006). This means that, unlike other deformation mechanisms, the trace term cannot be neglected when modeling the co-seismic LOD change. The earthquakes from 1977 to 2011 decreased the LOD by about 12 μs, and the rate of decrease was enhanced after the 2004 Sumatra earthquake due to several large earthquakes.  相似文献   

4.
We used GPS velocities from approximately 700 stations in western China to study the crustal deformation before the Wenchuan MS8.0 earthquake. The processing methods included analyses of the strain rate field, inversion of fault locking and the GPS velocity profiles. The GPS strain rate in the E-W direction in the Qinghai-Tibet block shows that extensional deformation was dominant in the western region of the block (west of 92.5° E), while compressive deformation predominated in the eastern region of the block (from 92.5° E to 100° E). On a regional scale, the hypocentral region of the Wenchuan earthquake was located at the edge of an intense compression deformation zone of about 1.9 × 10−8/a in an east-west direction. The characteristic deformation in the seismogenic fault was compressive with a dextral component. The compression deformation rate was greater in the fault's western region than in its eastern region, and the strain accumulation was very slow on the fault scale. The results of a fault locking inversion show that the locking fraction and slip deficit was greater in the middle-northern section of the seismogenic fault than in the southern section. The GPS velocity profile before the Wenchuan earthquake shows that the compression deformation was smaller than the dextral deformation, which is asymmetrical with respect to the distribution of co-seismic displacement. These deformation characteristics should provide some clues to the Wenchuan earthquake which occurred in the later period of the earthquake cycle.  相似文献   

5.
On January 26 and February 3, 2014, Cephalonia Island (Ionian Sea, Greece) was struck by two strong, shallow earthquakes (moment magnitudes Mw6.1 and Mw6.0, respectively) that ruptured two sub-parallel, strike-slip faults, with right-lateral kinematics. The scope of the present work is to investigate the complex correlations of the earthquake activity that preceded the Mw6.1 event in the broader area of the Cephalonia Island and identify possible indications of critical stages in the evolution of the earthquake generation process. We apply the recently introduced methods of Multiresolution Wavelet Analysis (MRWA) and Natural Time (NT) analysis and for the first time we combine their results in a joint approach that may lead to universal principles in describing the evolution of the earthquake activity as it approaches a major event. In particular, the initial application of MRWA on the inter-event time series indicates a time marker 12 days prior to the major event. By using this time as the initiation point of the NT analysis, the critical stage of seismicity, where the κ1 parameter reaches the critical value of κ1 = 0.070, is approached few days before the occurrence of the Mw6.1 earthquake.  相似文献   

6.
New Late Cretaceous paleomagnetic results from the Okhotsk-Chukotka Volcanic Belt in the Kolyma-Omolon Composite Terrane yield stable and consistent remanent directions. The Late Cretaceous (86–81 Ma) ignimbrites from the Kholchan and Ola suites were sampled at 19 sites in the Magadan area (60.4° N, 151.0° E). We isolated the characteristic paleomagnetic directions from 16 sampled sites using an alternating field demagnetization procedure. The primary nature of these directions is ascertained by dual polarities and positive fold tests. A tilt-corrected mean direction (D = 42.8°, I = 84.7°, k = 46.0, α95 = 10.0°) yields a paleomagnetic pole of 66.7° N, 168.5° E (A95 = 18.8°) which appears almost identical to the 90–67 Ma pole reported from the Lake El’gygytgyn area of the Okhotsk-Chukotka Volcanic Belt (Chukotka Terrane). This consistency suggests that the Kolyma-Omolon Composite Terrane and Chukotka Terrane has acted as a single tectonic unit since 80 Ma without any significant internal deformation. Accordingly, we calculate a combined 80 Ma characteristic paleomagnetic pole (Long. = 164.7° E, Lat. = 68.0°, A95 = 10.9°, N = 12) for the Kolyma-Omolon-Chukotka Block which falls 16.5–17.5° south of the same age poles from Europe and East Asia. We ascribe this discrepancy in pole positions to tectonic activity in the area and infer a southward displacement of 1640 ± 1380 km for the Kolyma-Omolon-Chukotka Block with respect to the North American and Eurasian blocks since 80 Ma; more than 260 km of it is attributed to tectonic displacement in the Arctic Ocean due to the opening of the Canadian Basin.  相似文献   

7.
Outcrops of the Cretaceous Upper sandstone formation some 375 km to the East of Addis Ababa on the motor Highway to Harar was paleomagnetically investigated. About seventy core samples were collected at various stratigraphic levels from 250–300 meters thick sedimentary formation. After standard sample preparations in the laboratory the resulting specimens were subjected to routine paleomagnetic demagnetization protocol. In the first steps of demagnetizations process the recent and viscous magnetizations were removed by heating until a temperature of level of 300 °C. Further demagnetization of the samples resulted in the isolation of the final magnetization with stable line segments that is directed towards the origin, which is interpreted as Characteristic Remanent Magnetization (ChRM). Rock – magnetic experiments have identified goethite (αFeOOH), hematite (αFe2O3), detritial hematite, and magnetite as the magnetic mineral phases carrying the remanence. The ChRM identified resulted in an average value of (Ds = 0.5°, Is = ?0.7°, α95 = 4.3°, N = 34) for the red sandstones while an average value of (Ds = 335.8°, Is = ?31.8°, α95 = 4.7°, N = 14) for the limestone intercalations. The former ChRM in the red sandstone is determined to be secondary while the latter ChRM is known to be primary. Comparison of these directional results and their pole equivalents with the African plate Apparent Polar Wander Path curve established by Besse and Courtillot (2003) give ages of between 115–130 Million years for the limestone intercalation and ages of 30 million years for red sandstone unit. These are interpreted respectively as estimates of the age of deposition and a later remagnetization respectively.  相似文献   

8.
In western India during the Bhuj earthquake (Mw 7.6) on January 26, 2001, the Anjar City at ~30 km southwest of Bhuj experienced three types of damage scenario: severely damaged, less damaged and non-damaged. Similar damage patterns were also observed for the 1819 (Mw 7.8) and the 1956 (Mw 6.0) earthquakes. Microtremor array measurements were conducted in and around the Anjar city to examine the strength of soil structures and damage pattern. Significant differences are observed in frequencies and amplitudes in horizontal-to-vertical spectral ratio (HVSR) using microtremor measurements. The severely- damaged site shows two peak amplitudes: 2.8 at 1.2 Hz; and 4.0 at 8.0 Hz. The less-damaged site also shows two amplitudes: 2.5 and 2.1 at 1.4 Hz; and 2.0 Hz, respectively. The non-damaged site, on the other hand, shows that the HVSR curves become almost flatter. Similar results for three types of damage scenario based on analyses of earthquake records are also observed for the study area. The microtremor array measurements has revealed shear wave velocity Vs≥400 m/s at 18 m depth in the non-damaged, at 40 m in the less-damaged and at 60 m depth in the severely-damaged sites. The site amplitudes and the Vs values show a good correlation with the soil characteristics and damage pattern, suggesting that strength of soil layers at varying depths is a dictating factor for the estimate of the earthquake risk evaluation of the area under study.  相似文献   

9.
We analyzed records of eight seismic stations of the autonomous broadband seismograph network of a joint project between Utrecht University (the Netherlands), California Institute of Technology, and Centro de Investigación Científica y de Estudios Superiores de Ensenada (CICESE). These stations recorded the Mw 5.6 earthquake that occurred on 12 November 2003 at Salsipuedes basin in the middle of the Gulf of California 2 km west of the island Angel de la Guarda. This event was located at 29.16º N and 113.37º W, 30 km northeast of Bahia de los Angeles. A foreshock and hundreds of aftershocks were recorded in the 48 hours after its origin time. With the location of 29 earthquakes we identified the active segment, perpendicular to the main transform fault NW–SE of Canal de Ballenas, representing the transtensional boundary between the Pacific and North American plates. The direction of the active fault described is consistent with the normal fault mechanism reported by the National Earthquake Information Center (strike=39º, dip=34º, slip=–44º).From the duration magnitude of 456 aftershocks, we calculated a b-value of 1.14±0.28; furthermore, we calculated a seismic moment of (3.5 ±3.3) X1017Nm, a source radius of 3.7 ± 2.63 km, and a static stress drop of 3.94 ± 1.15 MPa (39.4 ± 11.5 bar.).  相似文献   

10.
Diamond bearing kimberlite pipes are exposed across the north-central part of the Siberian platform. Three main time intervals are considered to be the age of emplacement: the Devonian–Early Carboniferous, Triassic, and Cretaceous. However, isotopic age data from of the pipes are scattered and provide a very broad age interval for the magmatic activity. New paleomagnetic poles from four kimberlite pipes (Eastern Udachnaya, Western Udachnaya, International and Obnazhennaya) are obtained to estimate their paleomagnetic age. The mean primary magnetization directions for the pipes are as follows: D = 4.3°, I =  44.5° (k = 29.4, α95 = 7.4°, N = 14); D = 340.5°, I =  65.6° (k = 12.9, α95 = 19.4°, N = 6); D = 291.1°, I =  78.1° (k = 27.5, α95 = 14.9°, N = 5); and D = 306.7°, I =  82.6° (k = 38.4, α95 = 5.8°, N = 17), respectively. On the basis of a comparison with the Siberian apparent polar wander path (APWP) we estimate the age of kimberlite magmatism, assuming primary magnetizations in these rocks. The paleomagnetic ages are as follows: 428 ± 13 Ma for Eastern Udachnaya; 251 ± 30 Ma for International pipe; and 168 ± 11 Ma for Obnazhennaya pipe. The Western Udachnaya pipe was remagnetized and no clear paleomagnetic age could be determined. The ages of magmatic activity span the Early Silurian to Middle Late Jurassic. Early Silurian magmatism could be associated with the formation of the Viluy rift. Middle to Late Jurassic magmatic activity is most likely related to subduction related to the accretion of surrounding terranes to Siberia.  相似文献   

11.
《Journal of Geodynamics》2008,45(3-5):160-172
The December 26, 2003 Mw 6.6 Bam earthquake is one of the most disastrous earthquakes in Iran. QuickBird panchromatic and multispectral satellite imagery with 61 cm and 2.4 m ground resolution, respectively provide new insights into the surface rupturing process associated with this earthquake. The results indicate that this earthquake produced a 2–5 km-wide surface rupture zone with a complex geometric pattern. A 10-km-long surface rupture zone developed along the pre-existing Bam fault trace. Two additional surface rupture zones, each 2–5 km long, are oblique to the pre-existing Bam fault in angles of 20–35°. An analysis of geometric and geomorphic features also shows that movement on the Bam fault is mainly right-lateral motion with some compressional component. This interpretation is consistent with field investigations, analysis of aftershocks as well as teleseismic inversion. Therefore, we suggest that the 2003 Bam earthquake occurred on the Bam fault, and that the surface ruptures oblique to the Bam fault are caused by secondary faulting such as synthetic shears (Reidel shears). Our fault model for the Bam earthquake provides a new tectonic scenario for explaining complex surface deformations associated with the Bam earthquake.  相似文献   

12.
Modeling and migration couple is one of the most important steps in seismic data processing and interpretation. Absorbing boundary conditions used in the modeling were studied with the wave-equation by different authors. In this study, reflection coefficient analyses of recent solutions are compared to each other for the different incident angles of seismic waves to the modeling boundaries. According to the reflection coefficients correlation, the A3 condition is the most appropriate solution which greatly reduces artificial reflections from the boundaries. However, multi-transmitting Formula is better for relatively high angles between 32–58° with the usage of a special parameter. On the contrary, this formula is not an appropriate condition for angles lower than 32°, although it allows setting the boundary at any preferred angle. Considering that most of the boundaries are set in low angles, A3 solution is still most preferential condition. In this study, it is also aimed to find out the optimum grid intervals for minimizing the ill-posedness arose from the combination of the 45° finite difference migration equation and the B2 absorbing boundary condition for migration. Appropriate values are determined as ωΔx = 0.2 and ωΔz = 0.4 or neighbouring coarser values. It is also concluded that finer mesh spacing can increase the ill-posedness, in contrast to existence of some fine grid size values providing well-posedness. In addition, ill-posedness is obviously standard after ωΔx = 0.6 for all values of ωΔz.  相似文献   

13.
The present work integrates ground-based ionosphere measurements using very-low-frequency radio transmissions with satellite measurements of the total electron content to draw common conclusions about the possible impact that the Mw6.1 earthquake that took place in Greece on January 26, 2014, had on the ionosphere.Very-low-frequency radio signals reveal the existence of an ∼4-day anomaly in the wavelet spectra of the signals received inside the earthquake preparation zone and a significant increase in the normalized variance of the signals prior to the earthquake (approximately 1 day before).Through total electron content analysis, it was possible to identify a clear anomaly from 15:00 until 20:00 UT on the day before the earthquake that appears again on the day of the earthquake between 07:00 UT and 08:00 UT. The anomalous values reach TEC1Sigma ∼4.36 and 3.11, respectively. Their spatial and temporal distributions give grounds to assume a possible link with the earthquake preparation. The geomagnetic, solar and weather conditions during the considered period are presented and taken into account.This work is an initial and original step towards a multi-parameter approach to the problem of the possible earthquake-related effects on the ionosphere joining observations made from both ground stations and satellites. A well-founded knowledge of these phenomena is clearly necessary before dealing with their application to earthquake prediction purposes.  相似文献   

14.
Adsorption of Pb2+ from aqueous solution onto a sugarcane bagasse/multi-walled carbon nanotube (MWCNT) composite was investigated by using a series of batch adsorption experiments and compared with the metal uptake ability of sugarcane bagasse. The efficiency of the adsorption processes was studied experimentally at various pH values, contact times, adsorbent masses, temperatures and initial Pb2+ concentrations. A pH of 4.5 was found to be the optimum pH to obtain a maximum adsorption percentage in 120 min of equilibration time. The composite showed a much enhanced adsorption capacity for Pb2+ of 56.6 mg g−1 compared with 23.8 mg g−1 for bagasse at 28 °C. The Langmuir adsorption isotherm provided the best fit to the equilibrium adsorption data. The pseudo first-order, pseudo second-order, intraparticle diffusion and Elovich kinetics models were used to analyse the rate of lead adsorption and the results show that the Elovich model is more suitable. The thermodynamic parameters of adsorption, namely ΔG°, ΔH° and ΔS°, were determined over the temperature range of 20–45 °C. The adsorption of Pb2+ onto both bagasse and the sugarcane bagasse/MWCNT composite was found to be spontaneous but for the former adsorbent it was enthalpy-driven whereas for the latter it was entropy-driven. Desorption of the lead-loaded adsorbents was fairly efficient with 0.1 mol dm−3 HCl. Overall this composite has the potential to be a good adsorbent for the removal of Pb2+ from wastewaters.  相似文献   

15.
It is understood that sample size could be an issue in earthquake statistical studies, causing the best estimate being too deterministic or less representative derived from limited statistics from observation. Like many Bayesian analyses and estimates, this study shows another novel application of the Bayesian approach to earthquake engineering, using prior data to help compensate the limited observation for the target problem to estimate the magnitude of the recurring Meishan earthquake in central Taiwan. With the Bayesian algorithms developed, the Bayesian analysis suggests that the next major event induced by the Meishan fault in central Taiwan should be in Mw 6.44±0.33, based on one magnitude observation of Mw 6.4 from the last event, along with the prior data including fault length of 14 km, rupture width of 15 km, rupture area of 216 km2, average displacement of 0.7 m, slip rate of 6 mm/yr, and five earthquake empirical models.  相似文献   

16.
In Central Iran there are several cities along the Dehshir fault, which have similar geological conditions to that of the city of Bam prior to the 2003 earthquake (Mw 6.5), during which more than 30,000 lives were lost. Optical stimulated luminescence (OSL) samples were collected from the Dehshir fault in order to place constraints on its seismic history. The single aliquot regenerative (SAR) dose measurement protocol on coarse grained quartz extracts was used for this study. This SAR protocol had to be optimized for the low OSL sensitivity by varying both the preheat temperatures and test doses used. Dose recovery tests showed that given laboratory dose could be successfully recovered. However, replicate palaeodose (De) data were scattered and consequently ages based on mean De's had large uncertainties. As this is thought to largely reflect poor bleaching conditions prior to sediment burial at the site, various statistical procedures were employed in conjunction with the stratigraphic knowledge of the site to try and extract more refined burial ages from the samples. From this the timing of the last earthquake was estimated around 2.0 ± 0.2 kyr. This refined age suggests that the earthquake catalogue of Iran is incomplete and more paleoseismological investigation is required to recognize and date the previous events of Dheshir fault.  相似文献   

17.
Many authors have proposed that the study of seismicity rates is an appropriate technique for evaluating how close a seismic gap may be to rupture. We designed an algorithm for identification of patterns of significant seismic quiescence by using the definition of seismic quiescence proposed by Schreider (1990). This algorithm shows the area of quiescence where an earthquake of great magnitude may probably occur. We have applied our algorithm to the earthquake catalog on the Mexican Pacific coast located between 14 and 21 degrees of North latitude and 94 and 106 degrees West longitude; with depths less than or equal to 60 km and magnitude greater than or equal to 4.3, which occurred from January, 1965 until December, 2014. We have found significant patterns of seismic quietude before the earthquakes of Oaxaca (November 1978, Mw = 7.8), Petatlán (March 1979, Mw = 7.6), Michoacán (September 1985, Mw = 8.0, and Mw = 7.6) and Colima (October 1995, Mw = 8.0). Fortunately, in this century earthquakes of great magnitude have not occurred in Mexico. However, we have identified well-defined seismic quiescences in the Guerrero seismic-gap, which are apparently correlated with the occurrence of silent earthquakes in 2002, 2006 and 2010 recently discovered by GPS technology.  相似文献   

18.
The propagation features of nighttime whistlers to low-latitude station, Suva (−18.2°, 178.3°, geomag. lat. −22.1°, geomag. long. 253.5°, L=1.15), Fiji, from preliminary observations made during the period from September 2003–2005, are reported. The observations of ELF–VLF signals commenced in September 2003 using the VLF set-up of World Wide Lightning Location Network at our station. The whistlers were observed during the severe magnetic storm of 20–22 November 2003 and moderate magnetic storm of 17–19 July 2005. A whistler with dispersion D=12.7 s1/2 occurred on 22 November at 00:11 h LT. On 20 July at 01:00 h LT, a short whistler with dispersion D=20.9 s1/2 and two whistler events having two-component whistlers with D=15.8, 16.7 s1/2 and 16.7, 17.3 s1/2 were observed. Non-ducted pro-longitudinal mode of the whistler propagation supported by negative latitudinal electron density gradients in the ionosphere that are enhanced by magnetic storms, seems most likely mode of propagation for the whistlers with dispersion of 12.7–17.3 s1/2 to this low-latitude station.  相似文献   

19.
We elucidate the ecology of Recent Ostracoda from a deep brackish lake, Tangra Yumco (30°45′—31°22′N and 86°23′—86°49′E, 4595 m a.s.l.) and adjacent waters on the southern Tibetan Plateau. Ostracod associations (living and empty valves) in sixty-six sediment samples collected from diverse aquatic habitats (lakes, estuary-like water and lagoon-like water waters, rivers, ponds and springs) were quantitatively assessed.Eleven Recent Ostracoda were found (nine living and two as empty valves only). Cluster analysis established two significant (p < 0.05) habitat specific associations; (i) Leucocytherella sinensis, Limnocythere inopinata, Leucocythere? dorsotuberosa, Fabaeformiscandona gyirongensis and Candona xizangensis are lacustrine fauna. (ii) Tonnacypris gyirongensis, Candona candida, Ilyocypris sp., Heterocypris incongruens and Heterocypris salina are temporary water species.Ostracod distribution and abundance are significantly (p < 0.05) correlated to physico-chemical variables. The first two axes of a canonical correspondence analysis (CCA) explain 30.9% of the variation in the species abundance data. Conductivity and habitat types are the most influential ecological factors explaining the presence and abundance of ostracods. Spearman correlation analysis reveals that: (i) Two species, L.? dorsotuberosa (r = 0.25) and L. inopinata (r = 0.36) have a significant positive correlation with conductivity while one species, T. gyirongensis (r = −0.68) displays a significant negative correlation with conductivity. Limnocythere inopinata correlates significantly positive (r = 0.37) with alkalinity. Fabaeformiscandona gyirongensis correlates significantly positive (r = 0.28) with water depth.Key indicator living assemblages are: (i) L. sinensis dominates Ca-depleted brackish waters although ubiquitously distributed; (ii) L.? dorsotuberosa dwells in fresh to brackish waters; (iii) L. inopinata predominates in mesohaline to polyhaline waters; (iv) F. gyirongensis inhabits exclusively brackish-lacustrine deeper waters; (v) C. candida populates freshwaters; (vi) T. gyirongensis and Ilyocypris sp. are restricted to shallow temporary waters; (vii) H. incongruens occurs in ponds.Water depth indicators are F. gyirongensis and L.? dorsotuberosa, useful in ostracod assemblages for palaeo-water depth reconstruction.Our results expand the knowledge of the ecological significance of Recent Tibetan Ostracoda ecology. This is a new insight on habitat chacteristics of both living assemblages and sub-Recent associations of ostracods in mountain aquatic ecosystems. The new modern ostracod dataset can be used for the quantitative reconstruction of past environmental variables (e.g., conductivity) and types of water environment. The key indicator ostracods are relevant in palaeolimnological and climate research on the Tibetan Plateau.  相似文献   

20.
Two accurately calibrated superconducting gravimeters (SGs) provide high quality tidal gravity records in three central European stations: C025 in Vienna and at Conrad observatory (A) and OSG050 in Pecný (CZ). To correct the tidal gravity factors from ocean loading effects we compared the load vectors from different ocean tides models (OTMs) computed with different software: OLFG/OLMP by the Free Ocean Tides Loading Provider (FLP), ICET and NLOADF. Even with the recent OTMs the mass conservation is critical but the methods used to correct the mass imbalance agree within 0.1 nm/s2. Although the different software agrees, FLP probably provides more accurate computations as this software has been optimised. For our final computation we used the mean load vector computed by FLP for 8 OTMs (CSR4, NAO99, GOT00, TPX07, FES04, DTU10, EOT11a and HAMTIDE). The corrected tidal factors of the 3 stations agree better than 0.04% in amplitude and 0.02° in phase. Considering the weighted mean of the three stations we get for O1 δc = 1.1535 ± 0.0001, for K1 δc = 1.1352 ± 0.0003 and for M2 δc = 1.1621 ± 0.0003. These values confirm previous ones obtained with 16 European stations. The theoretical body tides model DDW99/NH provides the best agreement for M2 (1.1620) and MATH01/NH for O1 (1.1540) and K1 (1.1350). The largest discrepancy is for O1 (0.05%). The corrected phase αc does not differ significantly from zero except for K1 and S2. The calibrations of the two SG's are consistent within 0.025% and agree with Strasbourg results within 0.05%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号