首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are two kinds of Sabo dams in order to control sediment transport by debris flow and flash floods in mountainous area, which are closed and open-type's dams. In Japan, open-type's Sabo dams are constructed taking into account the continuity of sediment routing from upstream to downstream reach in a basin. A plan to construct a 20 m high grid-type Sabo dam which can capture a sediment volume of 400,000 m3 is proposed in the Amahata river basin in Japan. Hydraulic model tests are conducted to decide on the section for a dam (Section A, B) and the grid size such as clearance of vertical/horizontal bars for evaluating the plan. Several runs of flume tests are conducted and the sediment control function of the Sabo darn is discussed using several experimental data such as dimensionless sediment runoff rate from Sabo dam, temporal changes of bed profile and mean diameter and so on. It was found that sediment deposition in sediment storage area of Sabo dam was affected by curved channel, and that next the grid size of steel bars and thirdly the section of a dam was able to capture sediment in storage area of Sabo dam. Sediment was controlled well in the section B and in the grid size of 1.0×d95, and the problems related to sediment runoffafter sediment capturing in Sabo dam are pointed out.  相似文献   

2.
《国际泥沙研究》2020,35(6):621-635
The objective of the proposed method is to utilize a site investigation of a debris flow disaster and verify a real scale analysis to evaluate the impulsive load on an open sabo dam. The Nagiso debris flow disaster which occurred in Nagano in 2014, where damage caused by Typhoon Neogri was studied. The verification result of the site investigation demonstrated the weak components of the open Sabo dam experienced damage owing to the debris flow. A discrete element method is normally applied to a solid body to calculate an interaction function force with respect to the contact point between boulders and the dam. The numerical method initially concatenates elements that model the open Sabo dam. Moreover, the stiffness coefficient of flanges and coupling joints between pipes was expressed to utilize the sectional partition method to determine the structural characteristics. The method was improved to separate from the connecting elements beyond the boundary conditions. The debris flow model uses a water flow distribution model, and the debris flow flowed from 200 m upstream of the open sabo dam. Accordingly, the proposed method was examined to verify the primary cause of damage to the open sabo dam and used to reproduce the circumstances that evaluated the impulsive load occurrence mechanism in the case of a real disaster. In addition, the coupling joints between the hollow steel pipes utilized a ‘reproduction analysis’ for a real sabo dam and a ‘reinforced analysis’ for a reinforced sabo dam were applied to assess the weak point of the dam.  相似文献   

3.
《国际泥沙研究》2022,37(5):589-600
The dynamic impact force of debris flow on dams with a curved upstream face curved was investigated using laboratory experiments and a theoretical approach. Equations describing the impact force and maximum run-up height were derived. The experiments and theoretical considerations reveal that the impact force and maximum run-up height are mainly controlled by the Froude number (Fr) reduced by the cosine of the channel slope angle (cosα). Both the impact force and the maximum run-up height have a quadratic relation with the modified Froude number (Fr/(cosα)0.5). The experimental data and the results of the theoretical approach are in good agreement, indicating that the theoretical approach can be used in practical applications. It is concluded that the comparison between the curved-joint dam and the more conventional sharp-joint dam shows no differences in the maximum impact force and run-up height for the same modified Froude number. With the sharp-joint dam, the peak values of the impact force are reached more quickly than with the curved-joint dam.  相似文献   

4.
The formation of landslide dams is often induced by earthquakes in mountainous areas.The failure of a landslide dam typically results in catastrophic flash floods or debris flows downstream.Significant attention has been given to the processes and mechanisms involved in the failure of individual landslide dams.However,the processes leading to domino failures of multiple landslide dams remain unclear.In this study,experimental tests were carried out to investigate the domino failure of landslide dams and the consequent enlargement of downstream debris flows.Different blockage conditions were considered,including complete blockage,partial blockage and erodible bed(no blockage).The mean velocity of the flow front was estimated by videos.Total stress transducers(TSTs)and Laser range finders(LRFs) were employed to measure the total stress and the depth of the flow front,respectively.Under a complete blockage pattern,a portion of the debris flow was trapped in front of each retained landslide dam before the latter collapsed completely.This was accompanied by a dramatic decrease in the mean velocity of the flow front.Conversely,under both partial blockage and erodible bed conditions,the mean velocity of the flow front increased gradually downward along the sloping channel.Domino failures of the landslide dams were triggered when a series of dams(complete blockage and partial blockage) were distributed along the flume.However,not all of these domino failures led to enlarged debris flows.The modes of dam failures have significant impacts on the enlargement of debris flows.Therefore,further research is necessary to understand the mechanisms of domino failures of landslide dams and their effects on the enlargement of debris flows.  相似文献   

5.
汶川地震后我国西部山区大量崩滑体堵塞泥石流沟道,形成堰塞坝,暴雨条件下极易溃决形成溃决洪水,剧烈冲刷侵蚀下游松散堆积体,形成或加剧泥石流灾害规模,对下游拦挡工程的破坏性极强。通过室内水槽试验,监测堆积体内和拦挡坝后相关土水、动力参数响应规律,分析松散堆积体冲刷侵蚀启动力学机制及其与拦挡坝相互作用机理,并推导出考虑孔隙水压力的泥石流冲击力计算公式。结果表明:(1)冲刷启动过程中堆积体以溯源侵蚀、侧蚀为主,体积含水率和孔隙水压力先增后减,基质吸力呈波动减小。(2)在泥石流冲击拦挡坝过程中,坝后出现两次冲击峰值,第一次拦挡坝泄水通畅,振动加速度为1.29 m/s2;第二次排水受阻,振动加速度为1.22 m/s2,同时泥位达到峰值95 mm。(3)泥石流对拦挡坝的整体冲击力由动、静两部分组成,静冲击力与坝后孔隙水压力呈正比,而动冲击力与流速的平方呈正比。研究成果可为震后泥石流沟道松散堆积体冲刷启动机理研究与防治工程优化提供理论与技术支持。  相似文献   

6.
以显示动力学和接触碰撞理论为基础,应用ANSYS/LS-DYNA程序,对常规的泥石流重力拦挡坝和带支撑的新型拦挡坝进行了单个球体撞击下的多参数数值模拟计算及对比分析。结果表明:无论有无支撑,混凝土坝身的破坏模式均为由撞击区域应力骤增导致的局部混凝土压碎,但支撑使坝身迎击面应力分布均匀,提高了材料利用率;支撑能够显著减小混凝土坝顶动位移,最大减幅在30%以上,甚至可达近65%,坝身刚度得到大幅度提高;当撞击高度一定时,支撑间距越小,混凝土坝顶动位移越小;若设置了支撑,则可适当减小混凝土坝身厚度,其减小比例以1/3为宜;撞击力主要由混凝土坝身承担,其刚度显著大于支撑总刚度;撞击高度越高或者支撑间距越小,则混凝土坝底支反力所占比重相对越低,支撑的加强作用也就越显著。  相似文献   

7.
受汶川地震影响,四川等地泥石流治理更为迫切。泥石流的暴发具有突发性,在防治工程中,相比实体坝而言,格栅坝是一种节省材料、稳定性更高的拦挡结构,使用范围越来越广,但是目前尚无成熟的格栅坝设计方法。本文参考梳齿坝的已有理论确定了支墩间距的计算方法,并结合已有实验资料提出了格栅坝格栅间距的计算公式,改变了以往不同坝体乃至同一坝内各横梁间距一致的计算方法。另外,因支墩间隔相对较小,以简支模式计算石块对横梁冲击力并不合适,本文基于固定梁模式重新推导了计算公式,其计算结果与简支梁模式比较,数值大了3倍。最后考虑坝体建成后的不同情况,提出了支墩、横梁及两侧翼墙的详细计算工况,并基于以上设计理论,对烂泥沟泥石流治理工程的部分格栅坝进行了具体设计。  相似文献   

8.
1 INTRODUTIONTaiwan is a hilly-mountainous island lying across the center of the tropic. The slopeland accounts fortwo thirds of the total area of Taiwan. Most mountains are consisted of geologically young rocks incategories of fissile slates and shales which are easily eroded by weather. TOrrents combined with fissileslates and shales form debris flows with a very strong destrUctive power. This kind of debris flow canpotentially occur for almost all torrents whose gradient is steeper th…  相似文献   

9.
A sabo dam has a purpose to block the path of debris flow. However, when overflow occurs, a sabo dam works as a weir, a vertical obstruction, where the fluid must flow over. Many empirical formulas and discharge coefficients for weirs relating flow depth to discharge have been proposed to calculate overflow discharges. However, only a few studies about overflow discharge coefficients are available in the case of debris flow. In this paper, experiments and numerical simulations were done to estimate debris flow discharge coefficients by considering the sediment concentration. In the numerical simulation, a complete overflow equation and a free overfall equation were implemented to calculate debris overflow discharges at a sabo dam. To determine the discharge coefficients for each equation, single factor regression analysis was used. Laboratory experiments were done to calibrate and to compare with the simulation. Study results showed that the discharge coefficients increase as the sediment concentration increases. This finding suggests debris flow discharge coefficients are derived to calculate the debris overflow discharges at a sabo dam.  相似文献   

10.
Blocking is one of the important features when a beam dam intercepts debris flow, while self-cleaning is another when managing suspended debris flow. Both features determine the debris flow control benefits of beam dam but the latter often is not considered in practical engineering design. In this paper, a series of specially designed flume experiments were done to simulate blocking and self-cleaning processes. The blocking ratio and deposition features were measured to contrast the blocking and self-cleaning performance before and after artificial self-cleaning. The experimental results reveal that the beam dam net opening, particle diameter of sediment, sediment concentration, and gradient of the channel are the main factors affecting blocking performance. A new criterion of blocking performance of beam dams that considers the interaction of multiple factors and can provide guidance to practical project design is proposed. For all three types of blocking, sediment deposited upstream of a beam dam can be effectively transported downstream by erosion from post-debris-flow floods, Self-cleaning performance is most efficient for temporary blocking, followed by partial-blocking, and total-blocking. The efficiency of self-cleaning largely depends on the change of the sediment deposit due to erosion. Finally, a discussion is given for the optimal design of an open-type check dam and the feasibility of synergistic effects of self-cleaning in combination with artificial cleaning. Some supporting artificial silt-cleaning should be implemented in practice. A beam dam will, thus, have more storage capacity with which to control the next debris flow event.  相似文献   

11.
《国际泥沙研究》2020,35(5):431-443
In recent years, the damage caused to human settlements in Japan by large woody debris (LWD) has been increasing. For example, the 2013 Izu Oshima typhoon resulted in a large number of fatalities and missing persons, and the Kagoshima Typhoon Disaster and Northern Kyusyu torrential downpour caused vast infrastructure damage due to the associated LWD. Current countermeasures for preventing LWD are insufficient to maintain the safety of residential areas. One type of protective barrier, the open sabo dam, has been constructed in Japan during the past 30 years. The primary function of open sabo dams is to block the flow of boulders, thereby also reducing sediment flow by reducing the gap size. However, because Japanese open sabo dams are designed specifically for boulder-trapping, the ability of these dams to trap LWD remains uncertain. In particular, many problems have been reported with respect to sediment trapping by driftwood with roots in an open sabo dam setting. The objective of this study was to examine the trapping efficiency of open sabo dams for LWD and sediment. The experimental approach clarified the influence of driftwood, without and with roots, on sediment trapping for a straight-channel flume. The flexible roots of the driftwood were shown to have a significant effect on the sediment trapping efficiency of the dam.  相似文献   

12.
DESIGN OF SLIT DAMS FOR CONTROLLING STONY DEBRIS FLOWS   总被引:3,自引:0,他引:3  
1 INTRODUCTION Stony debris flows are natural, highly concentrated water-sediment mixture, which forms wherever the simultaneous availability of water, debris material and an adequate slope, steeper than o10 are satisfied (Gregoretti, 2000). In mountainous regions of Taiwan, due to vast development and utilization of hills, stony debris flows are important from the point of disaster prevention, since they occur frequently and often bring about heavy loss of lives and properties. Therefo…  相似文献   

13.
汶川8.0级地震水坝震害调查   总被引:11,自引:1,他引:10  
“5.12”汶川地震中水坝损毁严重,造成了巨大的经济损失。震后对69座溃坝险情和310座高危险情水库水坝进行了系统的调查,典型震害现象包括坝体裂缝、塌陷、滑坡、渗漏、启闭设施损坏和其他附属设施的损毁等。文中给出了不同烈度区的水坝震害分布,并对地震中水坝的震害现象做了初步总结和分析。  相似文献   

14.
The front part of the flow is very important and complex in the case of debris flow where there is an accumulation of large boulders. It is important to control or dampen the energy of the frontal part of a debris flow for the safety of the downstream area because the impact pressure of debris flow is much greater than that of clear fluid. The main objective of this study is to analyze the hydraulic characteristics of the proposed dam (i.e. closed-type dam with flap). The vertical pressure distribution of this type is compared with conventional dam types. In the experiments, the total pressure associated with major debris flows was recorded in real time by a system consisting of four dynamic pressure sensors installed on different types of dam. The results from experimental data clearly show that the dam with the flap has advantages of capturing the debris flow with large boulders and controls the total pressure by flow circulation due to presence of the flap structure compared to a closed-type dam without flap. Further-more, the empirical coefficients of hydrodynamic and solid collision models were proposed and com-pared with available coefficients.  相似文献   

15.
Subsurface dams are rather effective and used for the prevention of saltwater intrusion in coastal regions around the world. We carried out the laboratory experiments to investigate the elevation of saltwater wedge after the construction of subsurface dams. The elevation of saltwater wedge refers to the upward movement of the downstream saltwater wedge because the subsurface dams obstruct the regional groundwater flow and reduce the freshwater discharge. Consequently, the saltwater wedge cannot further extend in the longitudinal direction but rises in the vertical profile resulting in significant downstream aquifer salinization. In order to quantitatively address this issue, field-scale numerical simulations were conducted to explore the influence of various dam heights, distances, and hydraulic gradients on the elevation of saltwater wedge. Our investigation shows that the upward movement of the saltwater wedge and its areal extension in the vertical domain of the downstream aquifer become more severe with a higher dam and performed a great dependence on the freshwater discharge. Furthermore, the increase of the hydraulic gradient and the dam distance from the sea boundary leads to a more pronounced wedge elevation. This phenomenon comes from the variation of the freshwater discharge due to the modification of dam height, location, and hydraulic gradient. Large freshwater discharge can generate greater repulsive force to restrain the elevation of saltwater wedge. These conclusions provide theoretical references for the behaviour of the freshwater–seawater interface after the construction of subsurface dams and help optimize the design strategy to better utilize the coastal groundwater resources.  相似文献   

16.
拱坝横缝影响及有效抗震措施的研究   总被引:6,自引:0,他引:6  
大量研究结果和某些拱坝的地震震害表明,横缝对拱坝的地震响应有很大的影响。通过采用非光滑方程组方法以及考虑碰撞时刻动量、动能守恒来模拟横缝所引起的动接触问题,同时为了提高计算效率,采用隐-显式积分方法对坝-基系统的动力平衡方程进行求解。针对在拱坝中上部配筋这一抗震措施,也作了探讨。通过对小湾拱坝的分析,为高拱坝工程抗震措施的选择提供技术依据。  相似文献   

17.
汶川地震中绵阳市梓潼县水库土坝震害调查与分析   总被引:2,自引:0,他引:2  
5·12汶川特大地震对绵阳市梓潼县170座水库造成了不同程度的破坏和严重的经济损失.依据绵阳市梓潼县水库地震灾害的现场科学考察资料,对绵阳市梓潼县48座高危以上险情水库土坝的震损情况做了初步总结和分析.典型震害现象包括裂缝、渗漏以及泄水建筑物和附属设施的损毁等;以梓潼县3座典型震损水库土坝为例,总结了震损水库的特点和经验教训,给出了一些建设性结论.  相似文献   

18.
Seepage driving effect on deformations of San Fernando dams   总被引:2,自引:0,他引:2  
In the process of flow deformation of an earth dam, the seepage force inside the dam plays a role as a driving force. The seepage force acts just like the gravitational force in terms of pushing soils away from their original locations after liquefaction is triggered. This paper draws attention to this seepage driving effect by presenting a set of fully coupled finite element analyses on the well-known San Fernando dams, with the objective of evaluating the impact of this seepage effect. The results indicate that while this effect is always there, its practical significance depends on a number of factors. In the case of the upper San Fernando dam, which experienced a significant, but restricted, downstream movement during the 1971 earthquake, the seepage driving effect was indeed significant. On the contrary, for the lower dam, which failed and slid into the upstream reservoir during the same earthquake, this seepage effect was relatively less pronounced. The detailed results of the analyses reveal the likely mechanisms of failure and deformation of the two dams and the likely cause behind the difference between their responses during the earthquake.  相似文献   

19.
《国际泥沙研究》2022,37(5):687-700
Globally, between 1950 and 2011 nearly 80,000 debris flow fatalities occurred in densely populated regions in mountainous terrain. Mitigation of these hazards includes the construction of check dams, which limit coarse sediment transport and in the European Alps number in the 100,000s. Check dam functionality depends on periodic, costly maintenance, but maintenance is not always possible and check dams often fail. As such, there is a need to quantify the long-term (10–100 years) geomorphic response of rivers to check dam failures. Here, for the first time, a landscape evolution model (CAESAR-Lisflood) driven by a weather generator is used to replicate check dam failures due to the lack of maintenance, check dam age, and flood occurrence. The model is applied to the Guerbe River, Switzerland, a pre-Alpine catchment containing 73 check dams that undergo simulated failure. Also presented is a novel method to calibrate CAESAR-Lisflood's hydrological component on this ungauged catchment. Using 100-year scenarios of check dam failure, the model indicates that check dam failures can produce 8 m of channel erosion and a 322% increase in sediment yield. The model suggests that after check dam failure, channel erosion is the remobilization of deposits accumulated behind check dams, and, after a single check dam failure channel equilibrium occurs in five years, but after many check dam failures channel equilibrium may not occur until 15 years. Overall, these findings support the continued maintenance of check dams.  相似文献   

20.
This study addresses the influence of landslide dams on surface water drainage and groundwater flow. In the study area of Scanno Lake and Sagittario River (Central Italy), a limestone rockslide‐avalanche formed a lake, which has an outlet that is occasionally active, showing infiltration into the rockslide dam. Several springs are present at the lake's base and are partly fed by seepage through the rockslide debris. Piezometric surveys, discharge measurements, pumping tests and chemical analyses are tools used to build a conceptual model of the groundwater flow and to evaluate the flow through the rockslide debris. Seasonal water isotopic signatures validate the assumed model, showing a mixing of infiltration recharge and groundwater seepage throughout the rockslide debris. Various recharge areas have been found for springs, pointing out those directly fed by the rockslide debris aquifer. Hypotheses about seasonal groundwater mixing between the regional carbonate aquifer and the rockslide debris aquifer are supported by isotope results. Seasonal changes in groundwater table level due to recharge and surface losses from seasonal outlet have been correlated with isotopic groundwater composition from the rockslide debris aquifer and the downstream springs; this relationship highlights the role of the rockslide dam body on the hydrodynamics of the studied area. Relationships between surface waters and groundwater in the area have been completely understood on the basis of water isotopic fingerprinting, finally obtaining a complete evaluation of groundwater renewable resources and its regimen. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号