首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Five erosion devices were compared using five intertidal estuarine sites covering a range of sediment stability from newly settled mud to very cohesive mud at the margins of a saltmarsh. The erosion devices use different methods of fluid shearing from horizontal currents/bed shear stresses to vertical water jets, and have different ‘footprint’ areas. The devices included: (1) the annular flumes (AFs—diameter 64 cm; footprint area 0.17 m2) of the Plymouth Marine Laboratory (PML); (2) PML's mini-annular flume (MAF—diameter 19 cm; area 0.026 m2); (3) the annular mini-flume (AMF—diameter 30.5 cm; area 0.032 m2) of the National Oceanography Centre Southampton (NOC); (4) NOC's Cohesive Strength Meter (CSM—diameter 3 cm; area 0.0007 m2); (5) NOC's EROMES (ER—diameter 10 cm; area 0.0079 m2). The quantification of threshold shear stress for bed erosion (τe) and sediment erosion rate was complemented by the measurement of physical, chemical and biological properties of the sediment (grain size, bulk density, water content, organic content, chlorophyll a, carbohydrates, macrofauna). The results demonstrated a significant correlation (r2=0.98) between the PML AF (laboratory measurement of undisturbed cored sediment) and PML MAF (in situ) for measurement of erosion thresholds for bed sediment. However, there were no significant correlations between AFs, the CSM and EROMES. There were no consistent correlations with physical or biological sediment properties due to the spatially unrelated sites and the marked differences in benthic assemblages. The sources of differences and the lack of correlations between erosion devices were due to several factors, including operational procedures (e.g., sediment resuspension during filling with water), definition of erosion threshold, the nature of the force applied to the bed, and method of calibration. In contrast to the CSM and EROMES, both types of AFs were able to record significant differences in the erodability of soft sediments from four sites. This indicates that the CSM and EROMES may not be very effective at measuring the differences in erosion thresholds of soft estuarine sediments.  相似文献   

2.
3.
Low tide rainfall may represent an important but little studied process affecting sediment fluxes on intertidal mudflats. In this study, we simulated rainfall events on an intertidal mudflat (median grain size=18.4 μm) of low slope (1 in 300) then quantified effects on sediment erodibility. Treatments consisted of a high (4.1 mm min−1 for 6 min) and low (0.36 mm min−1 for 60 min) rain intensity, chosen to match naturally occurring events and experiments were conducted seasonally (May and August) to encompass variations in ambient sediment stability. Changes in bed elevation due to rainfall were estimated using marked rods and sediment erodibility parameters (mass of sediment eroded at a flow velocity of 0.3 m s−1 (ME-30, g m−2) and critical erosion velocity (Ucrit, m s−1)) were determined in annular flumes (bed area=0.17 m2). Ambient/control sediment erodibility in May (ME-30=211 g m−2, Ucrit=0.18 m s−1) was higher than in August (ME-30=30 g m−2, Ucrit=0.26 m s−1) and was correlated with changes in biological activity. In May, surface sediment was influenced by high densities of the bioturbating snail Hydrobia ulvae (1736 ind. m−2) and low biomass of the sediment stabilising microphytobenthos (5.7 μg chlorophyll a cm−2). In contrast, in August H. ulvae densities were low (52 ind. m−2) and microphytobenthic biomass higher (9.2 μg chlorophyll a cm−2). The high rain treatment caused a decrease in bed elevation of between 1.5 mm (May) and 4.4 mm (August) and significantly reduced sediment organic content and microphytobenthic biomass. Rainfall increased sediment erodibility; compared to ambient sediments ME-30 increased by a factor of 1.4× in May and 8.8× in August and caused a 10–30% decline in Ucrit. The seasonal difference in treatment effect was due to the change in ambient sediment stability. The low rain treatment in August had no effect on bed elevation, microphytobenthic biomass or sediment erodibility. In May, the same treatment caused a reduction in bed elevation (0.5 mm) and microphytobenthic biomass but counter-intuitively, a decrease in sediment erodibility (ME-30 was reduced by 40%, Ucrit increased by 5%) compared to controls. We attribute this result to removal by rainfall of easily eroded surface flocs and biogenic roughness which resulted in an underlying sediment with a smoother surface and greater resistant to erosion. Results suggest that high intensity rain events may destabilise intertidal sediments making them more susceptible to erosion by returning tidal currents and that the sediment eroded during such events may represent a considerable fraction (up to 25%) of the seasonal variation in shore elevation. The impact of natural rain events are likely to vary considerably due to variations in droplet size, intensity and duration and the interaction with ambient sediment stability.  相似文献   

4.
Sediment erosion results from hydrodynamic forcing, represented by the bottom shear stress (BSS), and from the erodability of the sediment, defined by the critical erosion shear stress and the erosion rate. Abundant literature has dealt with the effects of biological components on sediment erodability and concluded that sediment processes are highly sensitive to the biota. However, very few sediment transport models account for these effects. We provide some background on the computation of BSS, and on the classical erosion laws for fine sand and mud, followed by a brief review of biota effects with the aim of quantifying the latter into generic formulations, where applicable.  相似文献   

5.
The stability of cohesive sediments from Venice lagoon has been measured in situ using the benthic flume Sea Carousel. Twenty four stations were occupied during summertime, and a sub-set of 13 stations was re-occupied during the following winter. Erosion thresholds and first-order erosion rates were estimated and showed a distinct difference between inter-tidal and sub-tidal stations. The higher values for inter-tidal stations are the result of exposure that influences consolidation, density, and organic adhesion. The thresholds for each state of sediment motion are well established. However, the rate of erosion once the erosion threshold has been exceeded has been poorly treated. This is because normally a time-series of sediment concentration (C) and bed shear stress (τ0(t)) is used to define threshold stress or cohesion (τcrit,z) and erosion rate (E). Whilst solution of the onset of erosion, τcrit,0, is often reported, the evaluation of the erosion threshold variation through the process of erosion (eroded depth) is usually omitted or not estimated. This usually leads to assumptions on the strength profile of the bed which invariably has no credibility within the topmost mm of the bed where most erosion takes place. It is possible to extract this information from a time-series through the addition of a step in data processing. This paper describes how this is done, and the impact of this on the accuracy of estimates of the excess stress (τ0(t)–τcrit,z) on E.  相似文献   

6.
Elutriate embryo-larval bioassays with sea-urchins (Paracentrotus lividus) were conducted concurrently with chemical analyses of sediments and biota as part of an integrative assessment of pollution in highly productive coastal regions. High metal contents and organic compounds in sediments and mussels were found in localised areas from the inner part of the estuaries indicating a clear anthropogenic influence. In particular, average maximum concentrations of 2803 mg Cu/kg dw, 776 mg Pb/kg dw, 2.5 mg Hg/kg dw and 5803 μg ∑7PAHs/kg dw were measured in sediments from the most polluted sites. Significant correlations were observed between sediment chemistry and toxicity bioassays. Moreover, the Mantel test revealed a significant correlation (rM=0.80; p<0.01) between sediment pollutant concentrations and toxicity data profiles. In addition, sediment quality criteria were used to help in the ecological interpretation of sediment chemistry data and to identify pollutants of concern. The toxicity bioassays identified polluted sites and quantified the level of toxicity, providing a cost-effective tool to complement the routine chemical monitoring currently conducted in European coastal waters with ecologically relevant information. This is in line with the recent European legislation that advocates the use of biological tools with the ultimate aim of protecting marine resources from anthropogenic substances that will affect their sensitive early life stages.  相似文献   

7.
Vertical profiles of the critical erosion threshold (τcrit) in sediment have been measured at 11 stations along the axis of the Tamar Estuary and at a single station in a tributary of the Tamar at St. John's Ford. The τcrit of surface sediment increased from 0.04 Pa in the upper, brackish estuary to 0.09 Pa in the lower estuary. In the upper estuary τcrit only increased slightly with depth whereas in the marine estuary τcrit increased rapidly from 0.09 Pa at the surface to 0.25 Pa at 15 cm below the sediment surface. The results showed that the relationship between τcrit and bulk density (ρb) obtained previously for surface sediment was also applicable to sediments from depths of 10–15 cm and probably deeper. Profiles of ρb were measured to depths of 70 cm using a corer. In the lower (marine) estuary ρb increased with depth in the sediment from 1580 kg m−3 at the surface to 1720 kg m−3 at 70 cm. In the upper estuary ρb values were lower at 1170–1200 kg m−3 and profiles were almost homogeneous indicating that consolidation was not occurring. The mid-estuary was transitional between these two situations. These results are consistent with the seasonal accumulation and loss of ‘mobile’ sediment observed previously in the upper estuary with changes in river flow, and with the apparent stability of intertidal mud in the lower marine estuary deduced from historical bathymetric survey records. The slopes of the intertidal mud banks ranged from 1–2% in the lower estuary to 20–25% in mid-estuary but, instead of continuing to increase in steepness towards the head as the estuary became narrower, the measured slopes actually decreased. It is speculated that the lack of consolidation through continual mobilisation and settlement cycles combined with an increase in silt content in the upper estuary resulted in sediment that lacked the mechanical strength to maintain steep slopes.  相似文献   

8.
The objective of the study presented in this paper is to investigate the predictive capabilities of a process-based sand–mud model in a quantitative way. This recently developed sand–mud model bridges the gap between noncohesive sand models and cohesive mud models. It explicitly takes into account the interaction between these two sediment fractions and temporal and spatial bed composition changes in the sediment bed [Van Ledden (2002) 5:577–594, Van Ledden et al. (2004a) 24:1–11, Van Ledden et al. (2004b) 54:385–391]. The application of this model to idealized situations has demonstrated a good qualitative agreement between observed and computed bed levels and bed composition developments. However, in real-life situations, a realistic quantitative prediction of the magnitude and timescale of this response is important to assess the short-term and long-term impacts of human interventions and/or natural changes. For this purpose, the Friesche Zeegat in the Wadden Sea (the Netherlands) is used as a reference to hindcast the morphological response in the period 1970–1994. Due to the closure of the Lauwerszee in 1969, the tidal prism of this tidal basin was reduced by about 30%. Significant changes in the bed level and bed composition have occurred in the decades following the closure to adjust to the new hydrodynamic conditions. We modeled the long-term bed level and bed composition development in the Friesche Zeegat in the period 1970–1994 starting with the geometry of 1970 by using a research version of Delft3D, which incorporates the sand–mud formulations proposed by [Van Ledden (2002) 5:577–594].The computed total net deposition in the tidal basin in the period 1970–1994 agrees well with the observations, but the observed decrease of the import rate with time is not predicted. The model predicts net deposition in the deeper parts and at the intertidal area in the basin and net erosion in between, which resembles the observations qualitatively. Furthermore, the computed distribution of sand and mud in the basin of the Friesche Zeegat appears to be realistic. Analysis of the results shows that the absence of the decreasing import rate in the basin is caused by a poor quantitative prediction of the changes in the hypsometry of the basin. Because of this, the computed velocity asymmetry in the main channel tends toward flood dominance, whereas the observations indicate that the system is ebb-dominant in 1992. Although the sand–mud model needs to be further improved and verified, the results presented in this paper indicate that the model can be applied as a first step to estimate the effects of human interventions on the large-scale bed level and bed composition changes in tidal systems with sand and mud.  相似文献   

9.
Sediment transport models require appropriate representation of near-bed processes. We aim here to explore the parameterizations of bed shear stress, bed load transport rate and near-bed sediment erosion rate under the sheet flow regime. To that end, we employ a one-dimensional two-phase sheet flow model which is able to resolve the intrawave boundary layer and sediment dynamics at a length scale on the order of the sediment grain. We have conducted 79 numerical simulations to cover a range of collinear wave and current conditions and sediment diameters in the range 210–460 μmμm. The numerical results confirm that the intrawave bed shear stress leads the free stream velocity, and we assess an explicit expression relating the phase lead to the maximum velocity, wave period and bed roughness. The numerical sheet flow model is also used to provide estimates for the bed load transport rate and to inspect the near-bed sediment erosion. A common bed load transport rate formulation and two typical reference concentration approaches are assessed. A dependence of the bed load transport rate on the sediment grain diameter is observed and parameterized. Finally, the intrawave near-bed vertical sediment flux is further investigated and related to the time derivative of the bed shear stress.  相似文献   

10.
《国际泥沙研究》2021,36(6):723-735
This numerical modeling study (i) assesses the influence of the sediment erosion process on the sediment dynamics and subsequent morphological changes of a mixed-sediment environment, the macrotidal Seine estuary, when non-cohesive particles are dominant within bed mixtures (non-cohesive regime), and (ii) investigates respective contributions of bedload and suspended load in these dynamics. A three dimensional (3D) process-based morphodynamic model was set up and run under realistic forcings (including tide, waves, wind, and river discharge) during a 1-year period. Applying erosion homogeneously to bed sediment in the non-cohesive regime, i.e., average erosion parameters in the erosion law (especially the erodibility parameter, E0), leads to higher resuspension of fine sediment due to the presence of coarser fractions within mixtures, compared to the case of an independent treatment of erosion for each sediment class. This results in more pronounced horizontal sediment flux (two-fold increase for sand, +30% for mud) and erosion/deposition patterns (up to a two-fold increase in erosion over shoals, generally associated with some coarsening of bed sediment). Compared to observed bathymetric changes, more relevant erosion/deposition patterns are derived from the model when independent resuspension fluxes are considered in the non-cohesive regime. These results suggest that this kind of approach may be more relevant when local grain-size distributions become heterogeneous and multimodal for non-cohesive particles. Bedload transport appears to be a non-dominant but significant contributor to the sediment dynamics of the Seine Estuary mouth. The residual bedload flux represents, on average, between 17 and 38% of the suspended sand flux, its contribution generally increasing when bed sediment becomes coarser (can become dominant at specific locations). The average orientation of residual fluxes and erosion/deposition patterns caused by bedload generally follow those resulting from suspended sediment dynamics. Sediment mass budgets cumulated over the simulated year reveal a relative contribution of bedload to total mass budgets around 25% over large erosion areas of shoals, which can even become higher in sedimentation zones. However, bedload-induced dynamics can locally differ from the dynamics related to suspended load, resulting in specific residual transport, erosion/deposition patterns, and changes in seabed nature.  相似文献   

11.
Sediment cores from the western Gulf of Lions France were subject to known bottom shear stresses with the goal of understanding size-specific sediment erodibility. On cruises in October 2004, February and April 2005, cores with an undisturbed sediment–water interface were collected along a transect extending seaward from the Tet river mouth. The cores were exposed to increasing shear stresses (0.01–0.4 Pa) onboard the vessel shortly after collection by using a Gust erosion chamber. Samples of the suspensate were collected during the erosion experiments and analyzed for disaggregated inorganic grain size (DIGS) using a Coulter Multisizer IIe. Size-specific mobility plots were generated by dividing the proportion of each grain size in suspension at each shear stress by its proportion in the sediment before erosion. If all grain sizes that make up the bottom sediment are eroded equally from the bed, then mobility equals one for all grain sizes. Values >1 indicate that the suspended sediment is enriched in the size class and values <1 indicate that the size class is enriched in the bed. Results show that in non-cohesive, sandy silts, fine grains (clays and fine silts) are eroded preferentially from the bed at low shear stresses. With increasing bottom stress progressively larger grains are eroded from the bed. In cohesive silts, preferential erosion of the finer sizes no longer occurs, with all sizes up to medium silts eroding at approximately the same rate. Effectively, a sandy silt can be winnowed of its fine grain fraction during erosion while cohesive silts cannot. This difference in the sortability of cohesive and non-cohesive sediment during erosion may control the position and maintenance of the sand–mud transition and the sequestration of surface-adsorbed contaminants.  相似文献   

12.
In contrast to much previous research on blanket peat moorland, which has concentrated upon studies of the form and causes of gully erosion, this paper attempts to investigate sediment transport and to estimate both short-term and long-term sediment yields in such terrain. The research was conducted on Wessenden Head Moor to the west of Huddersfield, Yorkshire, where automatic stream sampling continued over a period of two years. Use of corrected rating curves (Ferguson, 1988) provided a mean estimate of sediment yield over this period of 55 t km?2 yr?1. In addition an estimate of longer-term sediment yield was derived from four reservoir sediment surveys in the Wessenden Valley. Total yield was 203.69 t km?2 yr?1, including an organic fraction of 38.82 t km ?2 yr?1. Stream sampling at three sites on Shiny Brook, including headwaters and the outflow to the reservoir, suggested that there is great temporal and spatial variability in mineral and organic inputs to the reservoirs. Although not excessive in gravimetric terms, the low density of peat means that there is a serious erosion problem. Estimates of erosion rates for the peat gully network at Shiny Brook appear to confirm earlier evidence concerning the relatively recent occurrence of this erosion, within the last two centuries.  相似文献   

13.
Areliable sediment transport capacity function provides response against challenges of soil erosion prediction on the Loess Plateau of China. The popular sediment transport capacity functions are questionable on loess slopes because the experimental conditions from which they were derived, like bed materials, gentle slopes,and surface roughness, are different from soil erosion processes on the loess slopes. Due to the foregoing uncertainty, a suitable sediment transport capacity function was dev...  相似文献   

14.
Tagus intertidal microphytobenthos (MPB) assemblages were characterized over a wide range of sediment type and tidal height and the possible effects of these variables on MPB spatial distribution and photo-adaptation mechanisms were investigated. Two transects with six different sediment type and different tidal height sites were sampled once every two months from 2002 to 2004. Upper shore and sandy sites showed higher chlorophyll a (chl a) content, with sandy sediments showing a biomass peak in late winter–early spring, and muddy sites showing no obvious seasonal pattern. Stepwise multiple linear regressions showed that only SiO2, tidal height and sediment particle size <63 μm were significant variables (p<0.05), explaining 50% of MPB biomass spatial–temporal variability. However, when data were separated by transect, only tidal height remained significant at both transects. Sandier sediments exhibited higher zeaxanthin/chl a and lower fucoxanthin/chl a ratios characteristic of a mixed cyanobacteria/diatom assemblages, showing an alternate seasonality with cyanobacteria increasing in summer and diatoms dominating in spring. Diatom biofilms showed contrasting features depending on the sediment type. Epipsammic diatoms were small with an average length of around 10 μm, while epipelic diatoms showed a wider size range with size distribution peaks at 10–15 μm, 25–35 μm and >60 μm. Epipelic biofilms showed evidence of being low light-acclimated (high fucoxanthin/chl a) and of photo-regulating by vertical migration movements (presence of endogenous vertical rhythms and lower diatoxanthin/diadinoxanthin). Epipsammic biofilms showed higher diatoxanthin/diadinoxanthin ratios and no vertical migration rhythms. Thus, the two diatom biofilm types had distinct strategies to photo-regulate: epipelic diatoms using vertical migration to position themselves at the sediment depth of optimum light conditions, and epipsammic diatoms using the xanthophyll cycle to photo-regulate. Further studies comparing epipsammic and epipelic assemblages are necessary to better understand MPB photo-regulation mechanisms.  相似文献   

15.
《国际泥沙研究》2020,35(6):563-575
Erosion of mixed cohesive and noncohesive sediments is studied using the erosion test instrument SEDFlume. The sediment mixtures are composed of well-sorted quartz sand (0.25–0.5 mm) and one of the three used muds: kaolinite, kaolinite-bentonite and Mississippi River muds. The mud contents cover from 0 to 100%. The measured data of erosion rate and bed shear stress are used to examine the segmented linear, nonlinear, and exponential erosion models. The parameters of each erosion model are related to the physical properties of sediment mixtures, including clay fraction, mud fraction, mixture dry density, and mud dry density. It is found that the three models can fit well with the data, and their parameters have strong relations with the mud fraction and mud dry density, to a less extent with the clay fraction, but not with the mixture dry density.  相似文献   

16.
Water level, sediment heterogeneity, and plant density are important factors that determine plant growth, distribution, and community structure. In the present study, we investigated the effects of these factors on the growth and root characteristics of Carex brevicuspis. We conducted an outdoor experiment to monitor biomass accumulation and allocation, relative root distribution mass ratio, longest root length, and total N and P contents of C. brevicuspis plants. We used a factorial design with two water levels (0 cm and −15 cm relative to the soil surface, named high and low water level treatments, respectively), three sediment types (sand/clay sediment with 0–15 cm of sand and 15–30 cm of clay; mixed sediment with 0–30 cm mixture of sand and clay with 1:1 volumw ratio; and clay/sand sediment with 0–15 cm of clay and 15–30 cm of sand), and three plant densities (88 plants per m2, 354 plants per m2, and 708 plants per m2). Biomass accumulation decreased with increasing plant density and was significantly higher in the low water level and the clay/sand sediment than in the high water level and the other two sediment types. The shoot:root ratio was markedly higher in the high water level than in the low water level and decreased with increasing plant density; further, in the high water level, it was significantly lower in the sand/clay sediment than in the other two sediment types. The relative root distribution mass ratio was markedly higher in the high water level treatments than in the low water level treatments. Further, in the high water level treatments, the relative root distribution mass ratio increased with increasing plant density in the clay/sand sediment and was lower in the sand/clay sediment than in the other two sediment types. The longest root length was significantly lower in the high water level than in the low water level and increased with increasing plant density in the sand/clay sediment in the high water level. Total N content in the plants was influenced only by sediment type; on the other hand, total P content was markedly higher in the high water level than in the low water level. Our data indicate that growth of C. brevicuspis was limited by higher water level, higher density and sand/clay sediment. Plants can increase shoot:root ratio and develop shallow root system to acclimate to high water level and thus could adjust shoot:root ratio and root characteristics, e.g. decrease their shoot:root ratio and allocating more root and increasing root length to the nutrient rich layer to acclimate to conditions of higher density and sediment heterogeneity.  相似文献   

17.
The Markermeer is a large and shallow man-made freshwater lake in the Netherlands, characterized by its high turbidity. As part of a study aiming to mitigate this high turbidity, we studied the water–bed exchange processes of the lake’s muddy bed. The upper centimeter’s–decimeter’s of the lake bed sediments mainly consists of soft anoxic mud. Recent measurements have proved the existence of a thin oxic layer on top of this soft anoxic mud. This oxic layer, which is much easier to be eroded than the anoxic mud, is believed to be related with Markermeer’s high-turbidity levels. Our hypothesis is that the thin oxic layer develops from the anoxic mud, enhanced by bioturbation. Actually, we will demonstrate that it is the bioturbated state of the bed that increases its erodability, and not the oxidation state of the sediments. In particular, we will refer to bioturbation caused by meiobenthic fauna. The objective of this study is therefore to determine the influence of the development of the thin oxic layer on the water–bed exchange processes, as well as to establish the role of bioturbation on those processes. This is done by quantifying the erosion rate as a function of bed shear stresses, and at different stages of the development of the oxic layer. Our experiments show that bioturbation increases the rate at which Markermeer sediments are eroded by almost an order of magnitude. The short-term fine sediment dynamics in Markermeer are found to be driven by the complex and highly dynamic interactions between physics, chemistry, and biology. Finally, the long-term fine sediment dynamics are driven by the erosion of the historical deposits in the lake’s bed, which is only possible after bioturbation, and which leads to an increase of the stock of sediments in the lake’s muddy bed.  相似文献   

18.
《国际泥沙研究》2022,37(6):701-714
E. coli and Listeria monocytogenes (or L. monocytogenes) are bacteria affecting fresh produce that is harmful for health of humans and animals. If these bacteria are present in surface waterbody (e.g., irrigation canals), they will impair irrigation water quality and threaten produce safety. This paper studied the resuspension of E. coli and Listeria from bed sediment into irrigation water through several sets of laboratory experiments in an open channel flume. We studied three types of sediments using several flow rates in different velocities and shear stress. Bacteria's concentration in water increases with the bed shear stress. Two empirical relations were derived to correlate the concentration of E. coli and L. monocytogenes with the dimensionless bed shear stress. The experimental data favorably verified the relationships for sandy loam, loamy sand, and loam. The results showed that both bacteria could entrain from sand more efficiently compared to other sediments (i.e., sandy loam or loam). These relationships can be applied to water quality models for simulating E. coli and L. monocytogenes transport in irrigation canals for better managing irrigation water quality.  相似文献   

19.
Retrogressive erosion is a high-speed erosion process that usually occurs during the rapid release of stored water in reservoirs built on sandy rivers.Retrogressive erosion has been utilized in the practice of reservoir sedimentation control,but accurate prediction of the bed deformation process by numerical models has rarely been reported.The current study presents a one-dimensional morphodynamic model for simulating the evolution process of retrogressive erosion induced by high-velocity flows on steep slopes.The governing equations apply a Cartesian coordinate system with a vertically oriented z axis.The bed surface gradient and friction terms in the flow equations include correction factors to take account of the effects of high slope on flow movement.The net vertical sediment flux term in the sediment transport and bed deformation equations is calculated using an equation of erosion velocity.Particularly,this equation is based on an empirical relation between the sediment entrainment rate and the Shields parameter in contrast to the traditional sediment transport capacity,and the critical Shields parameter is modified by taking into account the permeability of the sediment layer and the stability of particles on a slope.The feedback of scoured sediment on the flow movement is considered by additional terms in the governing equations.Flume experiments of retrogressive erosion in literature were simulated to validate the model.The temporal variations of the longitudinal profiles of the free surface and channel bed and the sediment transport rate were well predicted.The algorithm calculating sediment entrainment in the proposed model also was validated for an experiment measuring entrainment rate from the literature.More importantly,it was found that the morphodynamic model using the sediment transport capacity equation predicts the trend of cumulative erosion contrary to the measurements,while results of the proposed model can follow a similar trend with the observed data in the retrogressive erosion process.  相似文献   

20.
Being ecologically important and well-known, the spatial distribution pattern of the macrobenthos is often used to support an ecologically sustainable marine management. Though in many cases the macrobenthic spatial distribution is relatively well-known, this information is merely restricted to point observations at the sampling stations: although being increasingly demanded, full coverage spatial distribution maps are generally lacking. This study therefore aimed at demonstrating the usefulness of habitat suitability modelling as a full coverage mapping tool with high relevance for marine management through (1) the construction of a habitat suitability model for the soft sediment macrobenthic communities in the Belgian part of the North Sea (BPNS) and (2) predicting the full coverage spatial distribution of macrobenthic communities within the BPNS. The BPNS was selected as a case study area because of the high data availability on both macrobenthos and environmental characteristics. Discriminant function analysis (DFA) objectively selected median grain size and sediment mud content and omitted bathymetry, slope and distance to the coast to represent the most important environmental variables determining the macrobenthic community distribution. The consequent crossvalidated, empirical habitat suitability model, using both median grain size and mud content, showed an a posteriori average correctly classified instances (CCI) of 79% (community-dependent CCI ranging from 72% to 86%) and a Cohen's kappa of 0.71, pointing towards a very good agreement between model predictions and observations. The application of the habitat suitability model on the full coverage maps of median grain size and sediment mud content, taken from literature, allowed to reliably assess the distribution of the macrobenthic communities within 96.3% of the 53,297 BPNS grid cells with a resolution of 250 m. Next to its applicability to the BPNS, the model is further anticipated to potentially perform well in the full Southern Bight of the North Sea: testing is advised here. Since the habitat suitability is considered far more stable through time compared to the permanently fluctuating macrobenthic communities, information on the habitat suitability of an area is considered highly important for a scientifically sound marine management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号