首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以多跨简支的直线梁桥为研究对象,在对比分析主要抗震国家现行桥梁抗震设计规范关于结构横向地震反应计算所采用的简化方法的基础上,通过变化跨径比、墩高、桥墩刚度比等主要结构设计参数,对刚性梁模型与柔性梁模型在模拟结构横桥向地震反应方面的合理性进行比较,提出了适用于多跨简支规则直线梁桥横向地震反应计算的合理简化模型,并对简化计算方法进行改进。  相似文献   

2.
在地震作用下中小跨径梁桥横向易出现落梁以及桥墩破坏。为了防止桥梁出现上述震害,提出以楔形挡块作为限位装置来提升桥梁的横向抗震性能。以一座3×20 m连续混凝土梁桥为例,通过OpenSees软件来建立有限元模型,在考虑板式橡胶支座的摩擦滑移效应、钢筋混凝土桥墩的非线性等力学效应的情况下,对其进行动力时程分析。引入主梁位移响应、桥墩顶部最大位移响应等作为指标,用柔性挡块、刚性挡块两种工况来与楔形挡块进行对比分析,并且分析楔形挡块不同角度对位移响应的影响。结果表明:楔形挡块角度设置合适时能够有效约束梁体位移响应,并且不显著提高桥墩顶部的位移响应。  相似文献   

3.
服役曲线梁桥常存在爬移病害。为探讨爬移病害程度对曲线梁桥抗震性能的影响规律,通过总结服役曲线梁桥爬移病害,确定以不同梁端爬移位移量作为描述服役曲线梁桥爬移状态的对比分析工况,并以一座三跨预应力混凝土曲线梁桥为例,采用MIDAS Civil建立有限元模型,考虑桩-土相互作用、双向碰撞效应及材料非线性,分析曲线梁桥支座及桥墩等主要受力构件地震响应规律,探讨爬移状态对服役曲线梁桥抗震性能影响。研究结果表明:主梁的爬移病害对桥梁的抗震性能会产生不利影响,会导致支座位移的增长,增加支座破坏的风险,从而增加桥梁上部结构碰撞效应及落梁风险;随着爬移位移的增加,桥墩的损伤状态可能由爬移前的无损伤转变为考虑爬移后的严重损伤状态。因此,在进行服役曲线梁桥抗震性能评估时应量化其爬移状态,并采用合理的措施对主梁的爬移进行限制。  相似文献   

4.
大跨网架屋盖挑檐部分风致响应较大,提出附加杆件、粘弹性阻尼器及粘滞阻尼器三种加固减振方法。设计制作正置四角锥体单元空间网架足尺子结构试验模型,基于带悬挑平屋盖风压分布风洞试验数据,对三种加固足尺子结构试验模型进行不同风向角下风荷载时程的加载。分析结构风致加速度与位移响应,结果表明:附加杆件加固后网架刚度增大,加速度响应增大,位移响应减小;附加粘弹性阻尼器,结构加速度与位移响应均降低;附加粘滞阻尼器,结构加速度响应减小,位移减小效果不明显。  相似文献   

5.
将梁简化为两端简支的欧拉-伯努利梁模型,桥墩简化为底部固结的柱,考虑两自由度车辆移动系统与桥面结构表面接触处不平整产生的随机激励,建立了移动车辆系统-桥-墩的耦合力学分析模型。根据子结构方法和演变随机过程一般理论,并应用模态分析法对车-桥-墩耦合系统进行随机振动分析,推导得到了桥墩位移、桥墩轴力、梁竖向位移协方差函数和均方值响应的理论计算公式。通过数值算例,比较了跨中位移的确定性响应和跨中位移的均方根值响应,讨论了在不同桥墩高度、不同车辆移动速度、不同桥面等级下桥梁跨中竖向位移均方根、桥墩轴力均方根的变化规律。  相似文献   

6.
为研究轻骨料混凝土桥梁的地震响应,以一座强震区典型连续梁桥为研究对象,在考虑轻骨料混凝土材料特性基础上建立桥梁结构有限元分析模型,采用非线性动力时程分析法进行结构地震响应分析,研究轻骨料混凝土材料布设位置对桥梁结构动力特性和地震响应的影响,并从内力和位移响应方面与普通混凝土桥梁进行对比。结果表明:与普通混凝土桥梁相比,仅上部结构或仅下部结构采用轻骨料混凝土对降低桥墩内力并不明显,而全桥采用轻骨料混凝土能够显著降低桥墩内力。轻骨料混凝土桥梁与普通混凝土桥梁地震内力和位移响应变化趋势不同,桥墩塑性发展程度和时间存在差异。采用轻骨料混凝土桥梁方案时,应综合考虑结构质量、刚度分布及材料塑性特性与普通混凝土桥梁的不同,合理确定抗震设计方案。  相似文献   

7.
为研究不同设计参数对曲线梁桥地震响应的影响以指导结构抗震设计,对不同支承约束曲线梁桥地震响应及地震需求敏感性进行分析。采用增量动力分析(IDA)方法对比分析了不同支承约束曲线梁桥的结构地震响应变化趋势;采用Tornado图形法对不同结构参数影响程度进行了排序,找出了对结构地震需求影响显著的参数。结果表明:采用板式橡胶支座桥梁因支座易发生滑移而导致上部结构位移较大,但降低了下部结构响应,设置固定墩后,下部结构损伤显著增加;对于采用板式橡胶支座和铅芯橡胶支座的曲线梁桥,墩高及跨径对墩底曲率需求影响较大,而对于固定墩为墩梁固结形式和采用盆式橡胶支座的曲线梁桥,跨径及跨数对墩底曲率需求影响较大;对于采用不同支承约束的曲线梁桥,墩高和曲率半径对桥台位移需求影响较大,仅次于地震动参数PGA。  相似文献   

8.
翟红刚 《地震工程学报》2020,42(5):1303-1309
以某高层装配式钢结构建筑为研究对象,研究设计参数对其抗倒塌能力的影响,通过ABAQUS有限元软件,对装配式混凝土平面框架的低周反复加载试验进行模拟。结果表明,增大框架柱轴压比可提高结构承载力,在荷载峰值达到后会有较快的降低,显著降低了延性。在荷载低周反复作用下,结构延性、承载力、耗能等随着梁柱线刚度比的降低,抗震指标全部呈现增加趋势。随着梁柱线刚度比的增大,层间位移角沿楼层分布均匀性变得越来越差;由于受到荷载作用低周反复后,会大大增加混凝土的强度,并降低耗能和延性指标,同时结构承载力则略微增大。增大轴压比后,如果保持相同的地震动强度,则将会大大提高结构性能极限状态的可能性,而如果结构的轴压比较大,很可能会出现对地震响应性能水平产生破坏等问题。  相似文献   

9.
为研究厦门市薄壁弯箱梁自行车桥的舒适度,借助SAP2000有限元软件建立自行车高架桥三维模型,参考德国标准EN 03设计人行荷载模型,计算0~50Hz频率范围内桥梁的动态响应,根据该桥结构动力特性,分析0~4Hz激励荷载作用下各跨跨中的动力响应及不同桥跨之间的衰减情况。结果表明:激励响应主要以竖向响应为主,横桥向和顺桥向的位移值大约为竖向位移值的0.51%~27.69%;第4跨激励响应最大,第3跨最小;相邻跨受迫振动响应随跨度距离的增大依次减小;跨内及不同桥跨间的加速度响应结果均达到规范规定的舒适度要求;速度响应同加速度在趋势上吻合度良好,速度指标可作为舒适度评价补充验算的指标。该研究结果对今后指导自行车桥设计和舒适度分析意义重大,并为研究者对该类桥的进一步研究提供借鉴。  相似文献   

10.
大跨度简支钢桁梁桥车-桥耦合振动影响因素分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以黄韩侯铁路新黄河特大桥156m简支钢桁梁桥作为工程背景,建立车辆动力模型、桥梁有限元模型并考虑轮轨关系,以蛇形运动和轨道不平顺作为系统的自激激励源,利用大型有限元软件ANSYS以及UM(Universal Mechanism)动力学分析软件联合进行仿真分析。从桥梁结构的桥门架、宽跨比、曲线钢桁梁桥和车辆系统的轨道不平顺以及货车编组角度出发,研究大跨度简支钢桁梁桥车-桥耦合振动的影响因素。经过计算分析得出:钢桁梁桥桥门架对桥梁跨中加速度影响较大;曲线钢桁梁桥随着线路半径的增大,各车辆动力响应参数逐渐变小,轮轨力受到影响;钢桁梁桥宽跨比的增加使得横向刚度随之增加,桥梁横向振动变小;各项车辆动力响应均随着轨道情况变差而总体呈现逐渐增大趋势,车辆安全性、舒适性和平稳性指标逐渐变差;全列空车编组和空重混编对钢桁梁车-桥耦合系统是不利的编组形式,实际情况中应该避免。  相似文献   

11.
基于多源粘弹性人工边界,利用有限元软件ABAQUS建立了动力荷载作用下的路基-桥梁-车辆整体数值分析模型,分别计算动力荷载作用下车速、土-结构动力相互作用(SSI)因素对车-桥系统的影响规律。结果表明:对车桥系统来说,考虑土-结构相互作用时桥梁结构和车辆的竖向动力响应都较忽略时有显著的增大;桥梁的各参考点的竖向动力响应随着列车速度的增大而增大,但车速对桥梁的动力响应影响要大于土-结构动力相互作用的影响;地震使得车桥系统的动力响应明显的增大,同时地震作用下桥梁的参考点上竖向位移、速度的最大值出现时刻和只有列车荷载作用下出现时刻也不同。  相似文献   

12.
为研究斜腿夹角对V形墩连续刚构桥地震响应的影响及合理斜腿夹角角度,以一座典型V形墩预应力混凝土连续刚构桥为研究对象,采用有限元分析方法研究了斜腿夹角θ对桥梁内力及位移的影响,得出了θ对结构地震响应的影响规律和变化曲线。研究结果表明:随着斜腿夹角的增加,在纵向地震力作用下,墩底纵向弯矩逐渐减小,墩顶和主梁墩顶支撑处纵向弯矩逐渐增大;在横向地震力作用下,跨中横向弯矩逐渐减小,墩底横向弯矩逐渐增大,墩顶横向弯矩基本不变;在竖向地震力作用下,墩底和墩顶竖向弯矩逐渐增大,主梁支撑处竖向弯矩逐渐减小;斜腿夹角对纵向或横向地震力作用下结构位移影响不大,对竖向地震力作用下的位移影响较大。在满足静力设计的前提下,当两斜腿夹角为90°时,结构地震响应相对较小,受力合理性最优。研究成果可为该类桥梁的抗震设计与斜腿夹角角度选取提供参考和依据。  相似文献   

13.
为研究不同形式的中心支撑对钢管混凝土结构抗连续倒塌性能的影响,基于纤维梁模型建立5种钢管混凝土框架-中心支撑结构数值模型,在合理选取钢材和混凝土材料本构模型的基础上,计算不同失效工况下结构的抗连续倒塌非线性动力响应,通过非线性静力加载获得结构的整体刚度和极限承载力。研究结果表明:设置中心支撑均可以提高结构的整体刚度和抗倒塌承载能力,其中对边柱失效工况的提升效果好于中柱失效工况;设置中心支撑提供了新的荷载传递路径,可以有效减小失效柱相邻构件的分配内力;X型支撑在不同失效工况下都能显著提升框架刚度和承载能力,降低失效节点的竖向位移,反斜支撑框架表现出更好的延性和极限承载能力,研究结果可为建筑结构抗连续倒塌设计提供参考。  相似文献   

14.
利用大型通用有限元软件ANSYS的APDL参数化语言,建立某悬索桥结构三维有限元模型,通过加速度时程积分曲线,获得相应的位移时程曲线,在桥台及桥墩处施加位移时程荷载,分析桥梁结构多点激励地震响应,并分析一致激励与多点激励下桥梁关键位置位移、内力差异,研究不同激励方式的影响。  相似文献   

15.
以一座典型山区非规则梁桥为研究对象,建立了该桥梁多维多点激励下的多自由度动力计算模型,研究了该桥梁在多维多点激励下考虑支座摩擦滑移及结构碰撞等非线性因素时的抗震性能。研究结果表明:相比一维地震输入,多维地震可使结构的动力响应增加,桥墩底部弯矩需求增大;相比一致激励,多点激励可使得支座的位移需求增大,且地震波最后到达的桥墩上方支座位移最大;同时考虑多点激励和碰撞效应可使桥墩的弯矩需求增加;水平地震作用下,矮墩上部的支座容易滑动,且双向地震较单向地震更明显,三向地震输入较双向有所增强。因此,对山区非规则梁桥进行抗震设计时应有针对性地进行多维多点地震输入计算,找出结构的最大地震需求,以期指导设计。  相似文献   

16.
地震对多跨简支梁桥上列车运行安全的影响   总被引:3,自引:1,他引:3  
主要讨论了地震对多跨简支梁桥上列车运行安全的影响,建立了综合考虑地震输入,轨道不平顺和车辆蛇行运动的车-桥体系振动的动力分析模型,通过输入典型地震波,模拟列车过桥全过程,计算了车辆与桥梁的动力响应,研究了地震荷载对秦沈客运专线跨度为1232m的简支T梁和简支箱梁列车运行安全的影响,并讨论了列车运行速度和桥梁下部基础条件与车桥动力响应的关系。  相似文献   

17.
结合典型工程实例,采用在土体侧向边界节点处用弹簧并联阻尼器来进行模拟,在平面应变单元和桩体梁单元连接处用约束方程的方法进行节点耦合、满足连续条件,选择桩、土、荷载参数,用整体有限元方法进行桩-土-结构相互作用体系的地震反应分析。重点讨论了三种不同的上部结构刚度对桩基地震内力的影响,得到了在水平地震荷载作用下上部结构刚度的增大将增大桩基的内力及水平位移,且桩顶及桩身处于第一个软硬土层交界面处的截面的内力尤为突出等结论。关键词:上部结构刚度改变;桩-土-结构相互作用;弹性-阻尼边界;地震反应分析  相似文献   

18.
地震激励对高速车辆-简支箱梁桥系统动力响应的影响关系到高速铁路运营安全。基于车辆-轨道耦合动力学和列车-轨道-桥梁动力相互作用理论,运用有限元和多体动力学方法,建立高速铁路桥梁区段车辆-轨道-桥梁耦合系统动力学模型,分析在人工地震波作用下高速铁路车-线-桥耦合系统动力响应。结果表明:地震激励对轨道板、支撑层和桥梁的横向振动特性的影响大于对垂向振动特性的影响,桥梁结构对地震激励的敏感程度大于轨道结构;车辆运行速度对系统垂向振动特性的影响大于对横向振动特性的影响。研究结论可为地震荷载作用下高速铁路安全运营提供理论依据。  相似文献   

19.
曲线桥梁在役期间可能面临地震灾害,导致结构损坏甚至坍塌,为了评估在役桥梁的抗震性能,提出基于损伤分析的曲线梁桥抗震性能评估方法。建立旧曲线梁桥有限元模型,基于损伤分析的原理,提出适合曲线梁桥地震响应特性的构件损伤模型,在全桥有限元模型中输入不同类型地震动,计算各构件的损伤指数,并结合旧桥检算系数,由各构件损伤指数综合得到桥梁的整体损伤指数。结果表明:不同地震动下主梁会发生碰撞破坏,桥梁两端的支座容易发生移位,桥墩沿横桥向或顺桥向均会产生位移;不同地震动对主梁、支座、桥墩等构件造成的损害程度有较大差异,各构件的地震响应会影响桥梁整体结构的抗震性能,其中桥墩对桥梁整体抗震性能的影响最大,桥墩位移超过极限值可能导致倒塌;主梁反复碰撞会加剧桥梁的破坏程度,桥梁两端支座在地震作用下更容易发生损坏。  相似文献   

20.
对装配式环筋扣合锚接混凝土剪力墙的3层足尺子结构的拟静力试验结果进行分析,分别得到子结构在开裂、裂缝发展、较宽裂缝、竖向裂缝和极限状态共5种工况下所对应的荷载。分析了拟静力试验的荷载位移曲线,可以发现子结构的正刚度负刚度相差不大,刚度在循环荷载刚开始作用时衰减较快,但随着循环周数的不断增加,刚度变化变缓;分别绘制并分析了3层的荷载位移滞回曲线,发现每层结构的滞回耗能现象比较明显,可知:结构的延性系数较大;分析钢筋应变曲线可知:环筋扣合锚接可以很好的传递外部荷载作用。可以证明:该新型建筑体系具有很好的延性;该结构的整体抗震性能较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号