首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 174 毫秒
1.
Stone columns as liquefaction countermeasure in non-plastic silty soils   总被引:1,自引:0,他引:1  
In many cases densification with vibro-stone columns cannot be obtained in non-plastic silty soils. Shear stress re-distribution concepts [1] have been previously proposed as means to assess stone columns as a liquefaction countermeasure in such non-plastic silty soils. In this study, centrifuge testing is conducted to assess the performance of this liquefaction countermeasure. Attention is focused on exploring the overall site stiffening effects due to the stone column placement rather than the drainage effects. The response of a saturated silt stratum is analyzed under base dynamic excitation conditions. In a series of four separate model tests, this stratum is studied first without, then with stone columns, as a free-field situation, and with a surface foundation surcharge. The underlying mechanism and effectiveness of the stone columns are discussed based on the recorded dynamic responses. Effect of the installed columns on excess pore pressures and deformations is analyzed and compared. The test results demonstrate that stone columns can be an effective technique in the remediation of liquefaction induced settlement of non-plastic silty deposits particularly under shallow foundations, or vertical effective stresses larger than about 45 kPa (1000 psf) in free field conditions.  相似文献   

2.
Assessing liquefaction potential, in situ screening using cone penetration resistance, and liquefaction-remediation of non-plastic silty soils are difficult problems. Presence of silt particles among the sand grains in silty soils alter the moduli, shear strength, and flow characteristics of silty soils compared to clean host sand at the same global void ratio. Cyclic resistance (CRR) and normalized cone penetration resistance (qc1N) are each affected by silt content in a different way. Therefore, a unique correlation between cyclic resistance and cone resistance is not possible for sands and silty sands. Likewise, the response of silty soils subjected to traditional deep dynamic compaction (DC) and vibro-stone column (SC) densification techniques is influenced by the presence of silt particles, compared to the response in sand. Silty soils require drainage-modifications to make them amenable for dynamic densification techniques. The first part of this paper addresses the effects of silt content on cyclic resistance CRR, hydraulic conductivity k, and coefficient of consolidation Cv of silty soils compared to clean sand. The second part of the paper assesses the effectiveness of equivalent intergranular void ratio (ec)eq concept to approximately account for the effects of silt content on CRR. The third part of the paper explores the combined effects of silt content (viz effects of (ec)eq, k, and Cv) on qc1N using laboratory model cone tests and preliminary numerical simulation experiments. A possible inter-relationship between qc1N, CRR, accommodating the different degrees of influence of (ec)eq, k, and Cv on qc1N and CRR, is discussed. The fourth part of the paper focuses on the detrimental effects of silt content on the effectiveness of DC and SC techniques to densify silty soils for liquefaction-mitigation. Finally, the effectiveness of supplemental wick drains to aid drainage and facilitate densification and liquefaction mitigation of silty sands using DC and SC techniques is discussed.  相似文献   

3.
除饱和砂土液化外,饱和粉土地震液化问题也是岩土地震工程中一个重要的研究课题。饱和粉土地基的地震液化及变形可以采用多种地基加固方法防治,碎石桩技术是常用方法之一。碎石桩复合地基的抗液化效应,主要是增加桩周土体的密度、利于桩体的排水以及由桩体分担地震水平剪应力(桩体减震作用)。但由于粉土的土质特性,粉土-碎石桩复合地基的抗液化特性与砂土有着明显的差异。本文结合目前国内外碎石桩复合地基抗液化研究的最新进展,对粉土-碎石桩的密实、排水减压和减震作用做了较详细的评述,最后提出了关于碎石柱复合地基抗液化特性需要进一步研究的问题。  相似文献   

4.
Whether the presence of non-plastic silt in a granular mix soil impact its liquefaction potential and how to evaluate liquefaction resistance of sand containing different amounts of silt contents are both controversial issues. This paper presents the results of an experimental evaluation to address these issues. Two parameters, namely, equivalent intergranular void ratio (ec)eq and equivalent interfine void ratio (ef)eq, proposed in a companion paper (Thevanayagam, 2007) as indices of active grain contacts in a granular mix, are used to characterize liquefaction resistance of sands and silty sands. Results indicate that, at the same global void ratio (e), liquefaction resistance of silty sand decreases with an increase in fines content (CF) up to a threshold value (CFth). This is due to a reduction in intergrain contact density between the coarse grains. Beyond CFth, with further addition of fines, the interfine contacts become significant while the inter-coarse grain contacts diminish and coarse grains become dispersed. At the same e, the liquefaction resistance increases and the soil becomes stronger with a further increase in silt content. Beyond a limiting fines content (CFL), the liquefaction resistance is controlled by interfine contacts only. When CFCFth, at the same (ef)eq, the cyclic strength of a sandy silt is comparable to the host silt at a void ratio equal to (ef)eq.  相似文献   

5.
Whether the presence of non-plastic silt in a granular mix soil impact its liquefaction potential and how to evaluate liquefaction resistance of sand containing different amounts of silt contents are both controversial issues. This paper presents the results of an experimental evaluation to address these issues. Two parameters, namely, equivalent intergranular void ratio (ec)eq and equivalent interfine void ratio (ef)eq, proposed in a companion paper (Thevanayagam, 2007) as indices of active grain contacts in a granular mix, are used to characterize liquefaction resistance of sands and silty sands. Results indicate that, at the same global void ratio (e), liquefaction resistance of silty sand decreases with an increase in fines content (CF) up to a threshold value (CFth). This is due to a reduction in intergrain contact density between the coarse grains. Beyond CFth, with further addition of fines, the interfine contacts become significant while the inter-coarse grain contacts diminish and coarse grains become dispersed. At the same e, the liquefaction resistance increases and the soil becomes stronger with a further increase in silt content. Beyond a limiting fines content (CFL), the liquefaction resistance is controlled by interfine contacts only. When CF<CFth, at the same (ec)eq, the liquefaction resistance of silty sand is comparable to that of the host clean sand at a void ratio equal to (ec)eq. When CF>CFth, at the same (ef)eq, the cyclic strength of a sandy silt is comparable to the host silt at a void ratio equal to (ef)eq.  相似文献   

6.
Current techniques for liquefaction screening, ground modification for liquefaction mitigation, and post-improvement verification rely on knowledge gained from extensive research on clean sands, field observations of liquefied ground, and judicial correlation of normalized penetration resistance [(N1)60,qc1N] or shear wave velocity (vs1) data with field liquefaction observations. Uncertainties prevail on the direct extrapolation of such techniques for silty soil sites. This paper examines laboratory data on liquefaction resistance, strength, and vs1 of sands and silty soils using grain contact density as the basis. Effect of silt content on cyclic resistance, strength, mv, and cv is examined in this light. Rational insights on effects of silt content on the current screening techniques based on (N1)60, qc1N, and vs1 to silty soils are offered. Recent advances and modifications to the traditional densification, drainage, and permeation grouting techniques to make them viable for silty soils are discussed.  相似文献   

7.
饱和粉土液化特性的大型振动台模型试验研究   总被引:3,自引:0,他引:3  
京沪高速铁路徐沪段路基的粉土粘粒含量少于1.5%、粉粒含量约为80%,在强烈地震作用下存在着液化可能性.为充分研究这一饱和粉土地层的液化特性,本文作者利用大型地震模拟振动台,进行了模拟自由场地饱和粉土的地震液化模型试验,试验结果再现了自然地震触发的粉土液化的各种宏观震害现象,揭示了饱和粉土的地震液化规律和特征。试验结果为京沪高速铁路徐沪段路基的抗震设计提供了参考依据。  相似文献   

8.
In the present study, an artificial neural network (ANN) model was developed to establish a correlation between soils initial parameters and the strain energy required to trigger liquefaction in sands and silty sands. A relatively large set of data including 284 previously published cyclic triaxial, torsional shear and simple shear test results were employed to develop the model. A subsequent parametric study was carried out and the trends of the results have been confirmed via some previous laboratory studies. In addition, the data recorded during some real earthquakes at Wildlife, Lotung and Port Island Kobe sites plus some available centrifuge tests data have been utilized in order to validate the proposed ANN-based liquefaction energy model. The results clearly demonstrate the capability of the proposed model and the strain energy concept to assess liquefaction resistance (capacity energy) of soils.  相似文献   

9.
Mechanical behavior such as stress-strain response, shear strength, resistance to liquefaction, modulus, and shear wave velocity of granular mixes containing coarse and fine grains is dependent on intergrain contact density of the soil. The global void ratio e is a poor index of contact density for such soils. The contact density depends on void ratio, fine grain content (CF), size disparity between particles, and gradation among other factors. A simple analysis of a two-sized particle system with large size disparity is used to develop an understanding of the effects of CF, e, and gradation of coarse and fine grained soils in the soil mix on intergrain contact density. An equivalent intergranular void ratio (ec)eq is introduced as a useful intergrain contact density for soils at fines content of less than a threshold value CFth. Beyond this value, an equivalent interfine void ratio (ef)eq is introduced as a primary intergrain contact density index. At higher values of CF beyond a limiting value of fine grains content CFL, an interfine void ratio ef is introduced as the primary contact density index. Relevant equivalent relative density indices (Drc)eq and (Drf)eq are also presented. Experimental data show that these new indices correlate well with steady state strength, liquefaction resistance, and shear wave velocities of sands, silty sands, sandy silts, and gravelly sand mixes.  相似文献   

10.
Mechanical behavior such as stress-strain response, shear strength, resistance to liquefaction, modulus, and shear wave velocity of granular mixes containing coarse and fine grains is dependent on intergrain contact density of the soil. The global void ratio e is a poor index of contact density for such soils. The contact density depends on void ratio, fine grain content (CF), size disparity between particles, and gradation among other factors. A simple analysis of a two-sized particle system with large size disparity is used to develop an understanding of the effects of CF , e, and gradation of coarse and fine grained soils in the soil mix on intergrain contact density. An equivalent intergranular void ratio (ec)eq is introduced as a useful intergrain contact density for soils at fines content of less than a threshold value CFth. Beyond this value, an equivalent interfine void ratio (ef)eq is introduced as a primary intergrain contact density index. At higher values of CF beyond a limiting value of fine grains content CFL, an interfine void ratio ef is introduced as the primary contact density index. Relevant equivalent relative density indices (Drc)eq and (Drf)eq are also presented. Experimental data show that these new indices correlate well with steady state strength, liquefaction resistance, and shear wave velocities of sands, silty sands, sandy silts, and gravelly sand mixes.  相似文献   

11.
遮帘式板桩码头作为一种新型的板桩结构型式,其抗震性能研究是设计建造过程中的重要环节。在FEM-FDM水土耦合计算的平台上引入循环弹塑性本构模型,借助FORTRAN编程软件形成饱和砂土动力液化分析的数值方法,可有效模拟饱和砂土在地震动力作用下的非线性及大变形特性,同时也可模拟砂土液化流动对遮帘桩和前墙的动土压力。研究表明:地震作用下可液化土层超孔隙水压力比增长并发生较大的水平流动变形,对前墙的水平破坏大于竖向破坏;前墙剪力最大值位于海床与前墙交界处;遮帘桩剪力最大值位移与前墙底平行的位置;后拉杆拉力逐渐变大,前拉杆拉力逐渐变小。通过对板桩码头地震液化灾害的分析,可为抗震和抗液化设计提供参考依据。  相似文献   

12.
Laboratory cyclic triaxial tests were performed to investigate the effect of fine content on the pore pressure generation in sand. Strain-controlled, consolidated undrained tests have been performed with a cyclic shear strain range of 0·015-1·5%. These tests were carried to 1000 cycles or to initial liquefaction, which ever occurred first. Triaxial tests were performed on pure sand silt specimens and specimens with silt additions of 10, 20, 30, and 60% by weight. Two types of silt, a non-plastic silt and a low plasticity silt (PI 10) were used as control materials. The main parameters varied in this study were the amount of silt, the plasticity index of silt, and the void ratio where the observed parameter was the pore pressure generation. For all silt contents, silt plasticity and the number of loading cycles have no significant effect at strain levels below 0·01%. Therefore, threshold strain for silty sands have approximately the same value as sands. For both non-plastic and low plasticity silts, there is a significant increase in the generated pore pressure at high strain levels.  相似文献   

13.
Accurate prediction of the liquefaction of saturated soils is based on strong coupling between the pore fluid phase and soil skeleton. A practical numerical method for large strain dynamic analysis of saturated soils is presented. The up formulation is used for the governing equations that describe the coupled problem in terms of soil skeleton displacement and excess pore pressure. A mixed finite element and finite difference scheme related to large strain analysis of saturated soils based on the updated Lagrangian method is given. The equilibrium equation of fluid-saturated soils is spatially discretized by the finite element method, whereas terms associated with excess pore pressure in the continuity equation are spatially discretized by the finite difference method. An effective cyclic elasto-plastic constitutive model is adopted to simulate the non-linear behavior of saturated soils under dynamic loading. Several numerical examples that include a saturated soil column and caisson-type quay wall are presented to verify the accuracy of the method and its usefulness and applicability to solutions of large strain liquefaction analysis of saturated soils in practical problems.  相似文献   

14.
Whether the presence of non-plastic silt in a granular mix soil impact its liquefaction potential and how to evaluate liquefaction resistance of sand containing different amounts of silt contents are both controversial issues. This paper presents the results of an experimental evaluation to address these issues. Two parameters, namely, equivalent intergranular void ratio (ec)eq and equivalent interfine void ratio (ef)eq, proposed in a companion paper (Thevanayagam, 2007) as indices of active grain contacts in a granular mix, are used to characterize liquefaction resistance of sands and silty sands. Results indicate that, at the same global void ratio (e), liquefaction resistance of silty sand decreases with an increase in fines content (Cv) up to a threshold value (Crth). This is due to a reduction in intergrain contact density between the coarse grains. Beyond Crth, with further addition of fines, the interfine contacts become significant while the inter-coarse grain contacts diminish and coarse grains become dispersed. At the same e, the liquefaction resistance increases and the soil becomes stronger with a fttrther increase in silt content. Beyond a limiting fines content (CrL), the liquefaction resistance is controlled by interfine contacts only. When Cr〈Crth, at the same (e)eq, the liquefaction resistance of silty sand is comparable to that of the host clean sand at a void ratio equal to (ec)eq. When CF〉CFth, at the same (ef)eq, the cyclic strength of a sandy silt is comparable to the host silt at a void ratio equal to (ef)eq.  相似文献   

15.
黄土液化微细观特性试验研究   总被引:9,自引:6,他引:3       下载免费PDF全文
黄土液化演化过程的微观机理分析是液化防御的科学问题之一。通过微细观及动力学试验探索黄土液化的本质和影响因素。首先用CT细观扫描实验探索黄土渗透液化的细观变化,研究表明土体液面上升的根本原因是弱碱性盐类胶结物的吸水作用导致土样含水面整体上升;试样达到高饱和度,大孔隙周围颗粒间胶结物质破坏后有效应力为零,土层液化。粉土的孔隙尺寸和特殊的胶结物质导致高饱和度。土样微观结构的差异也会影响土的液面上升和破坏强度。针对低黏性粉土、粉质砂土及粉质黏土的三类黄土液化实验分析表明,低黏性粉土动荷加载时间更短,更易于液化,即低粘性粉土液化最为严重,粉质砂土为中等液化,粉质黏土相比其他黄土类别不易液化。电镜扫描土样微观结构参数分析表明,土颗粒周围胶结物质的化学元素比值(Ca/Fe),以及土颗粒粒径分布和孔隙尺寸(孔隙与颗粒比)均影响液化等级,可初步判断液化的强弱。  相似文献   

16.
This paper presents results of one-g shake-table tests on scoured pile-group-supported bridge models in saturated (liquefiable) and dry (nonliquefiable) sands. The primary objective is to reveal the influence of liquefaction on seismic demands and failure mechanism of scoured bridges. To this end, two identical models, each consisting of a 2 × 2 reinforced concrete pile-group with a center-to-center spacing of 3 times pile diameter, a cap and a single pier with a lumped iron block, were constructed and embedded into saturated and dry sands, respectively, with the same scour depth of 4 times pile diameter. Typical test results, including excess pore pressure, acceleration and displacement demands are interpreted first, followed by the focus on curvature demands and associated seismic failure mechanism identification. Finally, inertial and kinematic effects on pile curvature demands are estimated using cross-correlation analyses. Results show that near-pile liquefied soils exhibit more remarkable dilation tendency as compared to far field. For bridges under the given scour depth, soil liquefaction tends to significantly affect the failure modes via transferring damage positions from pier bottom to pile head and meanwhile from underground pile to pile head. In addition, pile group effects appear to be significant in nonliquefiable soils while to be relatively inessential in liquefied soils. Moreover, the inertial effect is more prominent in nonliquefiable soils, while the kinematic effect itself generally appears to be more significant in liquefiable soils. The test results can be used to validate numerical models for future studies.  相似文献   

17.
Softening and strength loss of sands with increasing excess pore water pressure under repeated loads is well-known. However, extensive damage to the built environment also occurs at the sites underlain by fine grained soils during seismic shaking. The primary objective of this study is to investigate the factors affecting cyclic behavior of saturated low-plastic silt through laboratory testing. For this purpose, an extensive laboratory testing program including conventional monotonic and cyclic triaxial tests was carried out over reconstituted silt samples. The effects of the inherent soil properties and the effects of loading characteristics on the cyclic response of saturated low-plastic reconstituted silt samples were examined separately. Based on the test results, a model was introduced to estimate the effect of initial shear stress on the cyclic response. Besides, liquefaction susceptibility of the samples was examined via current liquefaction susceptibility criteria.  相似文献   

18.
动载作用下饱和土壤液化的研究述评   总被引:5,自引:0,他引:5  
从土壤液化的机理、影响因素、液化的判别、液化的分析方法以及液化后土壤的性质等方面详述了动载(地震荷载和爆炸荷载)作用下的饱和土壤液化的国内外研究成果(主要是近十年的研究),并对其作出了述评。最后,对今后土壤液化的研究工作作出了展望,认为以下问题需要开展深入研究:⑴液化分析中的土骨架的动力本构模型;⑵Rayle igh波对地震液化的影响;⑶建构物的存在对液化的影响;⑷液化后土的性质和液化引起的建构物破坏;⑸尤其爆炸液化问题。  相似文献   

19.
基于现场开展土体液化问题研究势必成为今后土动力学中的一个重要发展方向。目前人工激振下的现场液化试验方法还不够成熟,尚需进一步探索和发展。本文从试验设备组成、场地地震动激励、试坑布置、饱和砂土模型制备、数据测量与采集等5个方面论述该方法中的主要技术问题。研究表明:动力加载系统激励产生的地震动在0~7m/s2;系统工作频率13~15Hz,饱和砂土模型与基础边缘的距离在0.5~2.5m范围内,更适合进行液化试验;应用水沉法现场制备饱和砂土模型,要重点注意试坑防水和尺寸定位的问题;数据测量与采集中要充分考虑对现场液化问题认识不够这一因素的影响,需对数据测量与采集提出附加要求;试验实例初步表明,该方法可行,适合开展液化问题研究。  相似文献   

20.
Liquefaction which is one of the most destructive ground deformations occurs during an earthquake in saturated or partially saturated silty and sandy soils, which may cause serious damages such as settlement and tilting of structures due to shear strength loss of soils. Standard (SPT) and cone (CPT) penetration tests as well as the shear wave velocity (V s)-based methods are commonly used for the determination of liquefaction potential. In this research, it was aimed to compare the SPT and V s-based liquefaction analysis methods by generating different earthquake scenarios. Accordingly, the Erci? residential area, which was mostly affected by the 2011 Van earthquake (M w = 7.1), was chosen as the model site. Erci? (Van, Turkey) and its surroundings settle on an alluvial plain which consists of silty and sandy layers with shallow groundwater level. Moreover, Çald?ran, Erci?–Kocap?nar and Van Fault Zones are the major seismic sources of the region which have a significant potential of producing large magnitude earthquakes. After liquefaction assessments, the liquefaction potential in the western part of the region and in the coastal regions nearby the Lake Van is found to be higher than the other locations. Thus, it can be stated that the soil tightness and groundwater level dominantly control the liquefaction potential. In addition, the lateral spreading and sand boiling spots observed after the 23rd October 2011 Van earthquake overlap the scenario boundaries predicted in this study. Eventually, the use of V s-based liquefaction analysis in collaboration with the SPT results is quite advantageous to assess the rate of liquefaction in a specific area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号