首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A two dimensional velocity model of the upper mantle has been compiled from a long-range seismic profile crossing the West Siberian young plate and the old Siberian platform. It revealed considerable horizontal and vertical heterogeneity of the mantle. A sharp seismic boundary at a depth of 400 km outlines the high-velocity gradient transition zone, its base lying at a depth of 650 km. Several layers with different velocities, velocity gradients and wave attenuation are distinguished in the upper mantle. They likewise differ in their inner structure. For instance, the uppermost 50–70 km of the mantle are divided into blocks with velocities from 7.9–8.1 to 8.4–8.6 km s?1.Comparison of the travel-time curves for the Siberian long-range profile with those compiled from seismological data for Europe distinguished large-scale upper mantle inhomogeneities of the Eurasian continent and allowed for the correlation of tectonic features and geophysical fields. The velocity heterogeneity of the uppermost 50–100 km of the mantle correlates with the platform age and heat flow, i.e., the young plates of Western Europe and Western Siberia have slightly lower velocities and higher heat flows than the ancient East European and Siberian platforms. At greater depths (150–250 km) the upper mantle velocities increase from the ocean to the inner parts of the continent. The structure of the transition zone differs significantly beneath Western Europe and the other parts of Eurasia. The sharp boundary at a depth of 400 km, traced throughout the whole continent as the boundary reflecting intensive waves, transforms beneath Western Europe into a gradient zone. This transition zone feature correlates with positions of the North Atlantic-west Europe geoid and heat-flow anomalies.  相似文献   

2.
The paper presents a review and analysis of new seismic data related to the structure of the mantle beneath the East European platform. Analysis of observations of long-range profiles revealed pronounced differences in the structure of the lower lithosphere beneath the Russian plate and the North Caspian coastal depression. The highest P-velocities found at depths around 100 km are in the range 8.4–8.5 km s?1. Deep structure of the Baltic shield is different from the structures of both these regions. No evidence of azimuthal anisotropy in the upper mantle was found. A distribution of P-velocity in the upper mantle and in the transition zone consistent with accurate travel-time data was determined. The model involves several zones of small and large positive velocity gradients in the upper mantle, rapid increases of velocity near 400 and 640 km depths and an almost constant positive velocity gradient between the 400 and 640 km discontinuities. The depth of the 640 km discontinuity was determined from observations of waves converted from P to SV in the mantle.  相似文献   

3.
《Journal of Geodynamics》1999,27(4-5):567-583
Upper mantle P and S wave velocities in the western South America region are obtained at depths of foci from an analysis of travel time data of deep earthquakes. The inferred velocity models for the Chile–Peru–Ecuador region reveal an increase of P velocity from 8.04 km/s at 40 km to 8.28 km/s at 250 km depth, while the S velocity remains almost constant at 4.62 km/s from 40 to 210 km depth. A velocity discontinuity (probably corresponding to the L discontinuity in the continental upper mantle) at 220–250 km depth for P and 200–220 km depth for S waves, with a 3–4% velocity increase, is inferred from the velocity–depth data. Below this discontinuity, P velocity increases from 8.54 km/s at 250 km to 8.62 km/s at 320 km depth and S velocity increases from 4.81 km/s at 210 km to 4.99 km/s at 290 km depth. Travel time data from deep earthquakes at depths greater than 500 km in the Bolivia–Peru region, reveal P velocities of about 9.65 km/s from 500 to 570 km depth. P velocity–depth data further reveal a velocity discontinuity, either as a sharp boundary at 570 km depth with 8–10% velocity increase or as a broad transition zone with velocity rapidly increasing from 560 to 610 km depth. P velocity increases to 10.75 km/s at 650 km depth. A comparison with the latest global average depth estimates of the 660 km discontinuity reveals that this discontinuity is at a relatively shallow depth in the study region. Further, a velocity discontinuity at about 400 km depth with a 10% velocity increase seems to be consistent with travel time observations from deep earthquakes in this region.  相似文献   

4.
杨峰 《地震》2020,40(4):33-48
选取黑龙江、 吉林、 辽宁、 内蒙古区域地震台网, 以及NECESSArray流动台阵记录的223个远震事件的波形资料, 采用多道互相关方法得到了22569个P波相对走时数据, 并计算了相应的走时灵敏度核, 应用有限频率层析成像反演得到中国东北地区上地幔600 km以上的P波三维速度结构模型, 利用检测板评估了反演结果的分辨率。 结果表明, 松辽盆地下方80~200 km的深度上呈主体的低速异常, 与这一地区上地幔浅部的高地温值和低密度的特征相互对应, 可能暗示了部分熔融的地幔。 南北重力梯度带两侧的速度结构明显不同, 这一差异可以延伸到200 km以下, 表明在中国东北地区南北重力梯度带有可能是一条上地幔内部结构的变化带, 或是深部结构的分界线。 长白山火山区下呈大范围的低速异常, 并可从上地幔浅部延伸到地幔转换带中, 推测此低速异常可能反映了地幔转换带内上涌的热物质, 上涌的原因则主要是受到太平洋板块俯冲运动的作用。  相似文献   

5.
中国境内天山地壳上地幔结构的地震层析成像   总被引:18,自引:5,他引:18       下载免费PDF全文
根据横跨中国境内天山的库车—奎屯宽频带流动地震台阵和区域地震台网记录的近震和远震P波走时数据,利用地震层析成像方法重建了沿该地震台阵剖面下方400 km深度范围内地壳上地幔的P波速度结构.结果表明:沿新疆库车—奎屯剖面,天山地壳具有明显的横向分块结构,且南、北天山地壳显示了较为强烈的横向变形特征,表明塔里木地块对天山地壳具有强烈的侧向挤压作用;在塔里木和准噶尔地块上地幔顶部有厚度约60~90 km的高速异常体,塔里木—南天山下方的高速异常体产生了较为明显的弯曲变形,而准噶尔—北天山下方的高速异常体向南一直俯冲到中天山南侧边界下方300 km的深度,两者形成了不对称对冲构造;在塔里木和准噶尔地块下方150~400 km深度存在上地幔低速体,其中塔里木地块一侧的上地幔低速物质上涌到南天山地块的下方;在塔里木—南天山200~300 km深度范围的上地幔存在高速异常体,它可能是地幔热物质向上迁移过程融断的塔里木岩石圈的拆离体. 上述结果表明,塔里木地块的俯冲可能涉及整个岩石圈深度,但其前缘仅限于南天山的北缘;青藏高原隆升的远程效应可能不但驱动塔里木岩石圈向北俯冲,同时还造成天山造山带南侧上地幔物质的涌入;天山造山带上地幔广泛存在的低速异常有助于其上地幔的变形,而上地幔物质的强烈非均匀性应有助于推动天山造山带上地幔小尺度地幔对流的形成;根据研究区地壳上地幔速度结构特征推断,新近纪以来天山快速隆升的主要力源来自青藏高原快速隆升的远程效应,相对软弱的上地幔为加速天山造山带的变形和隆升创造了必要条件.  相似文献   

6.
The Maqen-Jingbian wide-angle seismic reflection and refraction experiment was carried out in 1998, which aims at determining detailed structure in the crust and top of the upper mantle and understanding structural relation between the northeastern Tibetan plateau and the Ordos block. The 1-D crustal models inferred by waveform inversion show strong variations in crustal structure, which can be classified into four different types: ① an Ordos platform with the Proterozoic crust and two high-velocity layers in the northeast section, ② a transitional crust between the northeastern Tibetan plateau and the Ordos block across the Haiyuan earthquake zone, ③ the Qilian orogenic zone in the central part, and 4 the Qinling orogenic zone in the southwestern section. The Moho depth increases from ~42 km to ~62 km from the NE part to the SW part of the profile. The crystalline crust consists of the upper crust and lower crust in northeastern Tibetan plateau. There is an obviously low P-wave velocity layer dipping northeastward, which is 12–13 km thick, at the bottom of the upper crust in Qinling orogenic zone and Haiyuan earthquake zone. The lower crust is characterized by alternating high and low P-wave velocity layers. Beneath Ordos block, i.e., the NE part of the profile, the crust shows quite a smooth increase in P-wave velocity down to the Moho at a depth of about 42 km.  相似文献   

7.
Cross-correlation functions of noise are constructed on 119 interstation paths from seismic noise records at stations of Eastern Europe. Dispersion curves of the group velocity of Rayleigh waves obtained from the cross-correlation functions are used for constructing the three-dimensional distribution of the velocity of transverse waves on the East European platform and in adjacent regions by methods of surface-wave tomography. The mean velocity in the crust is minimum in the region of the Caspian depression and Black Sea basin (<3.3 km/s) and maximum in the Baltic shield area (>3.7 km/s). The upper mantle beneath the Baltic and Ukrainian shields is characterized by increased velocity and the absence of the asthenospheric layer. Reduced velocities are noted in the upper mantle of the Black Sea basin. A low-velocity anomaly in the shape of a vertical column is revealed at depths of 200–300 km in the central part of the Dnieper-Donets aulacogen, which confirms the existence of a paleorift in this region.  相似文献   

8.
Teleseismic data recorded by stations in the Swedish National Seismic Network (SNSN) are used for a study of upper mantle structure beneath the Baltic Shield using the receiver function technique. The data show very clear conversions from the 410 and 660 km discontinuities. The signals associated with P to S conversions at these discontinuities arrive 1-2 s earlier than predicted by global models such as IASP91 or PREM. We interpret this as a manifestation of higher than average velocities in the mantle beneath the shield, consistent with lower than average global temperatures. For a 1400 km profile along the network, we observe variations of around 1 second in delay times of P410s and slightly less for P660s. Under the assumption that the mantle discontinuities are at a given constant depth, the delay times of the mantle converted phases are tomographically inverted to reveal P and S velocity structure below the stations. Synthetic tests show that this tomographic inversion has the potential to resolve P and S velocity variations at structural scales adequate for upper mantle studies. Results from application to real data appear to be consistent with independently produced mantle velocity structures deduced from normal tomographic arrival time data. For the P velocity model, a north-dipping body of (relatively) low velocity is found for the central part of the profile at 58-64°N. A sharp contrast from low to high velocities that may be associated with the Proterozoic-Archean boundary is found at 66°N.  相似文献   

9.
中国东北是研究板内新生代火山活动及其成因的天然场所.以往的研究根据不同的壳幔速度结构,提出多种模型用以解释中国东北地区的火山活动.由于松辽盆地北缘的观测台站相对较少,导致这些模型对盆地北缘的约束较弱.我们利用近年来覆盖松辽盆地北缘的流动宽频带观测台站数据开展远震体波走时层析成像研究,获得了深达800 km的深部速度结构,在盆地北缘的火山群区域内得到如下认识:诺敏河和五大连池火山群共用一个200~300 km深处的地幔岩浆房.该地幔岩浆房内的低速异常为水平展布,未下延至地幔转换带内,并仅在该区域上地幔的局部范围内有所体现.结合前人的研究结果分析,我们认为该水平的局部低速异常可能是中生代晚期岩石圈拆沉导致的软流圈上涌热物质.  相似文献   

10.
四川地区地壳上地幔速度结构的初步研究   总被引:26,自引:6,他引:26       下载免费PDF全文
赵珠  张润生 《地震学报》1987,9(2):154-166
本文使用10个工业爆破和154个天然地震,以及四川台网50个台站记录的 P 波组到时等资料,以龙门山断裂和二次大地构造单元分界线为界(图1),得出四川东部盆地和西部高原不同的地壳上地幔平均速度模型.若简单地采用双层地壳模型,则东部地壳厚40-41km,壳下 P 波速度为8.15-8.2km/s,壳内上层平均速度为5.82-5.9km/s,厚18km,下层平均速度为6.47-6.54km/s,厚22-23km;西部地壳厚61-64km,壳下 P 波速度为7.8-7.84km/s,壳内上层平均速度为5.82-5.98km/s,厚27-28.5km,下层平均速度为6.94-7.0km/s,厚34-35.5km.此模型为四川地区走时表提供了依据,也为研究地壳上地幔结构与地震的关系,研究我国大陆地块的构造演化及形成等,提供了有用的约束.   相似文献   

11.
中国西部及邻区岩石圈S波速度结构面波层析成像   总被引:7,自引:5,他引:2       下载免费PDF全文
黄忠贤  李红谊  胥颐 《地球物理学报》2014,57(12):3994-4004
本文利用瑞利波群速度频散资料和层析成像方法,研究了中国西部及邻近区域(20°N—55°N,65°E—110°E)的岩石圈S波速度结构.结果表明这一地区存在三个以低速地壳/上地幔为特征的构造活动区域:西蒙古高原—贝加尔地区,青藏高原,印支地区.西蒙古高原岩石圈厚度约为80 km,上地幔低速层向下延伸至300 km深度,说明存在源自地幔深部的热流活动.缅甸弧后的上地幔低速层下至200 km深度,显然与印度板块向东俯冲引起俯冲板片上方的热/化学活动有关.青藏高原地壳厚达70 km,边缘地区厚度也在50 km以上并且具有很大的水平变化梯度,与高原平顶陡边的地形特征一致.中下地壳的平均S波速度明显低于正常大陆地壳,在中地壳20~40 km深度范围广泛存在速度逆转的低速层,这一低速层的展布范围与高原的范围相符.这些特征说明青藏高原中下地壳的变形是在印度板块的北向挤压下发生塑性增厚和侧向流动.地幔的速度结构呈现与地壳显著不同的特点.在高原主体和川滇西部地区上地幔顶部存在较大范围的低速,低速区范围随深度迅速减小;100 km以下滇西低速消失,150 km以下基本完全消失.青藏高原上地幔速度结构沿东西方向表现出显著的分段变化.在大约84°E以西的喀喇昆仑—帕米尔—兴都库什地区,印度板块的北向和亚洲板块的南向俯冲造成上地幔显著高速;84°E—94°E之间上地幔顶部速度较低,在大约150~220 km深度范围存在高速板片,有可能是俯冲的印度岩石圈,其前缘到达昆仑—巴颜喀拉之下;在喜马拉雅东构造结以北区域,存在显著的上地幔高速区,可能阻碍上地幔物质的东向运动.川滇西部岩石圈底界深度与扬子克拉通相似,约为180 km,但上地幔顶部速度较低.这些现象表明青藏高原岩石圈地幔的变形/运动方式可能与地壳有本质的区别.  相似文献   

12.
The method of detection of P-to-SV converted waves from distant earthquakes (Vinnik, 1977) was applied to sets of long-period records from a few seismograph stations in Europe and the west of North America. The results obtained suggest that the converted phases related to the major boundaries in the mantle can be reliably detected and the depths of conversion evaluated with an accuracy of a few kilometres. The depth of the olivine-spinel transition is close to 400 km and no difference between the estimates for the north of Europe and the west of North America is found. The depth of the boundary separating the upper and lower mantle is close to 640 km, which is 30 km less than in the recent Earth-reference models. Fine S velocity stratification of this transition changes laterally from a high-gradient layer 50 km thick, terminated at the bottom by a sharp discontinuity, to a gradient layer 100 km or more thick without the discontinuity. A striking anomaly of the mantle transition zone is found in the Rio Grande rift area where a well pronounced boundary is found at 510 km depth.  相似文献   

13.
Fundamental and first higher modes of the Rayleigh- and Love-wave group velocities along seven paths in Australia were jointly inverted by a controlled Monte Carlo procedure to obtain regional shear-wave velocity structures of the crust and upper mantle. Our data support the results of Gonez and Cleary which show an S-wave low velocity zone centred near 110 km depth in eastern Australia. However, the thickness-velocity contrast of the low velocity zone is significantly smaller. The crustal models for eastern Australia are characterized by upper crusts which are both thicker and have lower velocities than those in western Australia and have a less sharp crust-upper mantle boundary. The S-wave velocities for the upper mantle appear to be similar (~ 4.55 km s?1) throughout the continent, with no obvious dependence on the age of cratonization or crustal thickness.  相似文献   

14.
中国大陆及其邻近地区的地震层析成象   总被引:47,自引:15,他引:47       下载免费PDF全文
本文利用中国地震台网及ISC提供的区域地震和远震的P波走时数据,重建了中国大陆及其邻近地区的三维速度图象。 主要结果是:1.本文给出的速度图象揭示了中国大陆及其邻近地区的地壳和上地幔速度存在明显的横向不均匀性,这种不均匀性甚至在下地幔的1100km深度还依然存在。上地幔的速度图象同地表已知的地质构造特征的相关性可以追踪到110km,从220km以下很难找到它们之间的明显关系。2.45-0km和45+0km深度处的速度图象明显地表示出中国大陆的地壳厚度可以102.5°E附近为界分为两部分:其东部地壳薄,厚度都小于45km;西部有一条自若尔盖-松潘(34°N,102.5°E附近)向西北沿38°N往西至塔里木盆地南缘的分界线;其南部除滇西南之外,整个青藏高原的地壳厚度都大于45km;其北部除天山山脉之外,地壳厚度一般不大于45km.3.110km深度处的速度图象表明,速度异常呈块状分布。同中国大地构造分区略图比较之后发现,其中,扬子准地台和塔里木地台对应于高速区,中朝准地台则大都表现为低速异常;华南褶皱系为低速区,青藏地块南缘喜马拉雅和冈底斯念青唐古拉褶皱系则表现为高速异常。4.220km深度处的速度图象表明,中国大陆相当多的地区软流层有明显的显示。5.同450km和45+0km的速度图象一样,400km和600km的速度图  相似文献   

15.
Deep earthquakes located in the Tonga-Kermadec region produce exceptionally clear and sharp short-period P, S, PcP, ScP, and ScS phases which are recorded at many stations at distances of less than 60°. The data used in this study are produced by short-period stations located in oceanic-type regions (Fiji and New Caledonia), a mobile continental region (eastern Australia) and a shield region (central Australia). Differential travel-time residuals of the above phases at these stations are investigated to determine the contribution to the differential residuals from: (1) the upper part of the mantle (S-P residuals); (2) the core-to-station portion of the mantle (ScS-ScP residuals); and (3) the hypocenter-to core portion of the mantle (ScP-PcP residuals). The use of differential travel-time residuals considerably reduces near-station effects and effects due to inaccurate determination of the source parameters, and hence the results can be interpreted as due to variations along the propagation paths. The results show that (S-P) residuals from phases traveling along event-to-station paths are about 7 s smaller at the shield station than at the oceanic stations. This correlation with surface tectonic environments is equally strong for the (ScS-ScP) residuals, with the shield/oceanic station difference being about 4 s. Moreover, the data suggest that this correlation between differential residuals and surface tectonic environments is caused by variations in shear velocity within the upper part of the mantle. However, the data cannot uniquely resolve the required depth of these variations within the mantle. For example, if the shear velocity variations extend to a depth of 400 km beneath the recording stations, then the average shear velocity difference between shield- and oceanic-type environments is about 4%. However, if the variations extend only to a depth of 200 km, this difference is more than 8%.(ScP-PcP) and (ScS-PcS) residuals vary from about +1 to about +4 s at the different stations, apparently because of compressional velocity variations in the mantle along the Pc path. If the variation in compressional velocity within the mantle below a depth of about 600 km is about 10% and occurs near the source region, these results suggest that, in the vicinity of deep earthquake zones, variations in compressional velocity extend to a depth of about 1000 km. However, these results can equally be explained by a 1% variation in compressional velocity, evenly distributed along the entire Pc path. An estimate of Q determined from the observed predominant frequency of ScS waves, as recorded at the shield station, suggests that the average 〈Qs〉 of the mantle beneath about 600 km is about 1050 at frequencies of about 1 Hz.  相似文献   

16.
This part of the paper addresses the geotectonic interpretation of the velocity model obtained from the results of seismic studies under the DOBRE-4 project in Ukraine. The velocity field does not show distinct lateral changes from the Precambrian platform towards the younger tectonic structures in the southwest. Hence, based on the seismic data alone, it is not possible to recognize the tectonic units that are known on the surface. The Moho has an undulating pattern over an interval with a length of ~150 km. The amplitude of the undulations reaches 8 to 17 km. The similar wavelike behavior, although on a shorter spatial scale and lower amplitude, is also typical of the upper crust and upper mantle. The presence of several separate horizons in the folded crust revealed by the velocity model is consistent with the presence of the folded systems which have different extensions on the different depth levels in the Earth’s crust. This situation is believed to be typical of folding on the lithospheric scale and to reflect the rheological stratification of the crust. The DOBRE-4 velocity section of the crust and adjacent part of the mantle promotes a clearer view of the geodynamical model describing the formation of the southwestern part of East European Platform in the Early Precambrian from the plate’s tectonic standpoint.  相似文献   

17.
利用川滇地区长期积累的地震走时观测资料和汶川地震余震观测资料对汶川地震震源区及周边区域地壳和上地幔P波三维速度结构进行了研究.结果表明,浅部P波速度分布与地表地质之间具有很好的对应关系.龙门山断裂带在20 km以上深度表现为高速异常带,彭灌杂岩体和宝兴杂岩体为局部高速异常区.龙门山断裂带中上地壳的局部高速异常体对汶川地震的余震分布具有明显的控制作用.在余震带南端,余震全部发生在与宝兴杂岩体对应的高速异常体的东北侧;在余震带的中段,与彭灌杂岩体对应的高速异常体在一定程度上控制了余震的分布;在余震带的东北端,宁强-勉县一带的高速异常体可能阻止了余震进一步向东北扩展.龙门山断裂带中上地壳的P波高速异常表明介质具有相对较高的强度,在青藏高原物质向东挤出过程中起到了较强的阻挡作用,有利于深部能量积累.在30 km深度之下,扬子地块具有明显的高速特征,其前缘随深度增加向青藏高原方向扩展,在下地壳和上地幔顶部已达到龙门山断裂带以西.  相似文献   

18.
—More than 60 events recorded by four recently deployed seismic broadband stations around Scotia Sea, Antarctica, have been collected and processed to obtain a general overview of the crust and upper mantle seismic velocities.¶Group velocity of the fundamental mode of Rayleigh waves in the period between 10 s to 30–40 s is used to obtain the S-wave velocity versus depth along ten different paths crossing the Scotia Sea region. Data recorded by two IRIS (Incorporated Research Institutions for Seismology) stations (PMSA, EFI) and the two stations of the OGS-IAA (Osservatorio Geofisico Sperimentale—Instituto Antarctico Argentino) network (ESPZ, USHU) are used.¶The Frequency-Time Analysis (FTAN) technique is applied to the data set to measure the dispersion properties. A nonlinear inversion procedure, "Hedgehog," is performed to retrieve the S-wave velocity models consistent with the dispersion data.¶The average Moho depth variation on a section North to South is consistent with the topography, geological observations and Scotia Sea tectonic models.¶North Scotia Ridge and South Scotia Ridge models are characterised by similar S-wave velocities ranging between 2.0 km/s at the surface to 3.2 km/s to depths of 8 km/s. In the lower crust the S-wave velocity increases slowly to reach a value of 3.8 km/s. The average Moho depth is estimated between 17 km to 20 km and 16 km to 19 km, respectively, for the North Scotia Ridge and South Scotia Ridge, while the Scotia Sea, bounded by the two ridges, has a faster and thinner crust, with an average Moho depth between 9 km and 12 km.¶On other paths crossing from east to west the southern part of the Scotia plate and the Antarctic plate south of South Scotia Ridge, we observe an average Moho depth between 14 km and 18 km and a very fast upper crust, compared to that of the ridge. The S-wave velocity ranges between 3.0 and 3.6 km/s in the thin (9–13 km) and fast crust of the Drake Passage channel. In contrast the models for the tip of the Antarctic Peninsula consist of two layers with a large velocity gradient (2.3–3.0 km/s) in the upper crust (6-km thick) and a small velocity gradient (3.0–4.0) in the lower crust (14-km thick).  相似文献   

19.
An overview of the crust and upper mantle structure of Central America and the Caribbean region is presented as a result of the processing of more than 200 seismograms recorded by digital broadband stations from SSSN and GSN seismic networks. Group velocity dispersion curves are obtained in the period range from 10s to 40s by FTAN analysis of the fundamental mode of the Rayleigh waves; the error of these measurements varies from 0.06 and 0.09 km/s. From the dispersion curve, seven tomographic maps at different periods and with average spatial resolution of 500 km are obtained. Using the logical combinatorial classification techniques, eight main groups of dispersion curves are determined from the tomographic maps and eleven main regions, each one characterized by one kind of dispersion curves, are identified. The average dispersion curves obtained for each region are extended to 150s by adding data from a larger-scale tomographic study (Vdovin et al., 1999) and inverted using a nonlinear procedure. A set of models of the S-wave velocity vs. depth in the crust and upper mantle is found as a result of the inversion process. In six regions we identify a typically oceanic crust and upper mantle structure, while in the other two the models are consistent with the presence of a continental structure. Two regions, located over the major geological zones of the accretionary crust of the Caribbean region, are characterized by a peculiar crust and upper mantle structure, indicating the presence of lithospheric roots reaching, at least, about 200 km of depth.  相似文献   

20.
中国上地幔剪切波速度结构的初步研究   总被引:13,自引:4,他引:13       下载免费PDF全文
本文通过合成SH波理论地震图的方法,利用SS-S走时和SS波波形资料,研究了我国上地幔剪切波速度结构。初步结果表明,我国大陆上地幔可以分成两个独立不同的速度结构模型:一是青藏高原;另一是中国大陆东部。两部分均存在剪切波低速层,但埋藏深度不同,高原部分是100km,东部地区是60km,两部分的差异大约在350km以下趋于消失。在405km和660km深处存在剪切波的速度间断面。400km以下青藏高原和中国大陆东部地区剪切波的速度结构与北美洲、北大西洋西部、欧洲、阿尔卑斯带地区的结构一致,说明在这几个地区上地幔剪切波速度结构的横向变化在400km以下很小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号