首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accumulation of sediment within salmonid redd gravels can have a detrimental impact on the development of salmonid embryos; therefore, redd sedimentation represents a potential limiting factor for salmonid reproduction. The links between redd sedimentation, the dissolved oxygen content of intragravel water and salmonid embryo survival within the upper and middle parts of the Hampshire Avon catchment in southern England are explored. Measurements of surface and intragravel water quality and redd properties were undertaken for artificial redds constructed at known spawning sites. Salmonid embryos were also planted into artificial redds adjacent to the monitoring equipment. The rate of sedimentation of the newly cleaned redd gravels demonstrated a non‐linear decrease over time, which is attributed to a particle‐size‐selective depositional process. The results of the study confirm that low embryo survival and low dissolved oxygen concentrations in intragravel water can be attributed to the accumulation of sediment within the redd gravels. This was found to produce a reduction in redd permeability, which limited the interchange of surface and intragravel water and, therefore, the supply of dissolved oxygen to the intragravel environment. In view of the diminished status of salmonids within many of the UK's chalk rivers and streams, the results highlight the need for management initiatives aimed at reducing redd sedimentation and thereby optimizing salmonid embryo incubation success. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
When gravel bed load deposits are sluiced from hydraulic structures, the mo- tion of bed load over the apron, as is well known, may consist of sliding, rolling and saltation. At times, saltation may become so intensive that gravels have been observed to jump clear out of the water surface. The movement of gravel bed load may cause serious damages to the hydraulic structures through abrasion and im- pact. The extent of damage depends upon a number of factors, such as rock prop- erties of gravels, flow conditions, configuration as well as the strength of materials of hydraulic structures. In most cases the movement of gravel bed load takes place in ribbons in plan, consequently, the lateral distribution of damages is uneven, and protective measures to be adopted against abrasion and impact should be applied to the key part most frequently attacked by the gravel bed load. Possible repair should be anticipated in the layout of structures in order to facilitate the operation.  相似文献   

3.
Saturated wetland soils are typically depleted in oxygen due to rapid consumption by biological processes. Fine-grained sediments limit the vertical flux of oxygenated surface water. In forested wetlands potential exists for advective transport along preferential flow pathways created by decomposing roots or tree remains, resulting in isolated zones of oxygenated pore water. This potential is enhanced in wetlands that are perched above the regional water table, where increases in surface-water depth create significant downward hydraulic gradients. Along the Mississippi River floodplain, many wetlands are now perched as a result of groundwater mining. This study was conducted at Sky Lake, MS, through a growing season, with high temporal-resolution monitoring of redox potential as a proxy for the delivery of oxygenated surface water at 30 and 60 cm depths at six locations. Results showed reducing conditions at all locations under moderate inundation, but redox potential rose significantly at a subset of locations when surface-water exceeded one meter in depth. Rising redox potential is argued to represent localised advective transport of oxygen in excess of the rate of biological consumption. Wetland plants growing in perennially saturated soils may benefit from periodic increases in water depth and subsequent increase in the flux of oxygen along preferential flow paths.  相似文献   

4.
New Zealand's gravel‐bed rivers have deposited coarse, highly conductive gravel aquifers that are predominantly fed by river water. Managing their groundwater resources is challenging because the recharge mechanisms in these rivers are poorly understood and recharge rates are difficult to predict, particularly under a more variable future climate. To understand the river‐groundwater exchange processes in gravel‐bed rivers, we investigate the Wairau Plain Aquifer using a three‐dimensional groundwater flow model which was calibrated using targeted field observations, “soft” information from experts of the local water authority, parameter regularization techniques, and the model‐independent parameter estimation software PEST. The uncertainty of simulated river‐aquifer exchange flows, groundwater heads, spring flows, and mean transit times were evaluated using Null‐space Monte‐Carlo methods. Our analysis suggests that the river is hydraulically perched (losing) above the regional water table in its upper reaches and is gaining downstream where marine sediments overlay unconfined gravels. River recharge rates are on average 7.3 m3/s, but are highly dynamic in time and variable in space. Although the river discharge regularly hits 1000 m3/s, the net exchange flow rarely exceeds 12 m3/s and seems to be limited by the physical constraints of unit‐gradient flux under disconnected rivers. An important finding for the management of the aquifer is that changes in aquifer storage are mainly affected by the frequency and duration of low‐flow periods in the river. We hypothesize that the new insights into the river‐groundwater exchange mechanisms of the presented case study are transferable to other rivers with similar characteristics.  相似文献   

5.
There is growing acknowledgement of the interaction between animals and the river bed on which they live and the implications of biological activity for geomorphic processes. It has been observed that signal crayfish (Pacifastacus leniusculus) disturb gravel substrates, potentially promoting sediment transport and impacting ecological communities. However, the mechanisms involved and the extent of their impact remain poorly understood, especially in relation to other processes that affect grain mobility in gravel‐bed rivers. A series of flume experiments, using loose and water‐worked gravel beds of narrowly graded grain sizes that were exposed to 6 h of crayfish activity under low‐velocity flows, showed a substantial increase in the number of grains entrained by subsequent higher‐velocity flows when compared with control runs in which crayfish were never introduced. Crayfish alter the topography of their substrate by constructing pits and mounds, which affect grain protrusion. When walking and foraging, they also alter gravel fabric by reorienting and changing the friction angle of surface grains. In water‐worked surfaces, this fabric rearrangement is shown to lead to a statistically significant, partial reversal of the structuring that had been achieved by antecedent flow. For these previously water‐worked surfaces, the increase in entrainment arising from disturbance by crayfish was statistically significant, with grain transport nearly twice as great. This suggests that signal crayfish, an increasingly widespread invasive species in temperate latitudes beyond their native NW North America, have the potential to enhance coarse‐grained bedload flux by altering the surface structure of gravel river beds and reducing the stability of surface grains. This study illustrates further the importance of acknowledging the impact of mobile organisms in conditioning the river bed when assessing sediment entrainment mechanics in the context of predicting bedload flux. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
When fine sediments are present in gravel streambeds (gravel‐framework beds), the gravel can be more easily removed from its original position, compared with gravel in a streambed without fine sediment but otherwise under the same hydraulic conditions. In this study, the effect of the presence of sand on the initiation of gravel motion in gravel riverbeds was investigated using flume experiments. The relationship between the critical Shields stress for gravel motion initiation and the fraction of sand in the bed was determined experimentally. The results can be summarized as follows. (1) When the fraction of sand in the bed is smaller than about 0.4, the critical Shields stress for the initiation of gravel motion decreases with increasing fraction of sand. The critical Shields stress increases, however, with increasing fraction of sand when it is larger than about 0.4. (2) The difference between the value of the critical Shields stress predicted by the Egiazaroff equation and the value obtained from the experimental data becomes maximum at about 0.4 of the fraction of sand. Here an empirical relation between the critical Shields stress and the fraction of sand is proposed so as to consider the effects of the ratio of the characteristic gravel size to the mean size of the bed material on the critical Shields stress. (3) Gravel in armored beds can be more easily mobilized by supplying sand as part of a sediment augmentation scheme. The sand fraction in the subsurface layer of the bed appears to reduce the friction angle of exposed particles. Sediment augmentation using sand has been recently demonstrated to be a viable alternative for mobilizing gravel for the restoration of gravel‐bed rivers downstream of dams. The quantitative evaluation obtained through the experiments reported here may be useful for the design of augmentation schemes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
The plants and animals that inhabit river channels may act as zoogeomorphic agents affecting the nature and rates of sediment recruitment, transport and deposition. The impact of benthic‐feeding fish, which disturb bed material sediments during their search for food, has received very little attention, even though benthic feeding species are widespread in rivers and may collectively expend significant amounts of energy foraging across the bed. An ex situ experiment was conducted to investigate the impact of a benthic feeding fish (Barbel Barbus barbus) on particle displacements, bed sediment structures, gravel entrainment and transport fluxes. In a laboratory flume changes in bed surface topography were measured and grain displacements examined when an imbricated, water‐worked bed of 5.6 to 16 mm gravels was exposed to feeding juvenile Barbel (on average, 0.195 m in length). Grain entrainment rates and bedload fluxes were measured under a moderate transport regime for substrates that had been exposed to feeding fish and control substrates which had not. On average, approximately 37% of the substrate, by area, was modified by foraging fish during a four‐hour treatment period, resulting in increased microtopographic roughness and reduced particle imbrication. Structural changes by fish corresponded with an average increase in bedload flux of 60% under entrainment flows, whilst on average the total number of grains transported during the entrainment phase was 82% higher from substrates that had been disturbed by Barbel. Together, these results indicate that by increasing surface microtopography and undoing the naturally stable structures produced by water working, foraging can increase the mobility of gravel‐bed materials. An interesting implication of this result is that by increasing the quantity of available, transportable sediment and lowering entrainment thresholds, benthic feeding might affect bedload fluxes in gravel‐bed rivers. The evidence presented here is sufficient to suggest that further investigation of this possibility is warranted. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The currently enforced Bulgarian water legislation [the Water Act (1999), the Environmental Protection Act (2002), etc.] requires conducting special studies for accurate assessments of sand and gravel flux along the rivers, prior to the issue of the license for operation of the quarries, where they will be dredged. The activity of a quarry necessitates special investigations because of the large dimensions of the damages inflicted on the environment. Ours studies have shown that there are two types of river reaches, in which abstraction of sand and gravel is performed. The first one refers usually to the plain area river reaches. The other type is mountainous with high rate of sediment load, which consists of coarse solid matter. The “on-the-spot” study on the environmental impact of the sand and gravel dredging has revealed that in the area of the quarry the riverbed cuts into the alluvial sediments to about 6-7 m and this ditch has spread by attenuation at a distance of more than 25 km upstream. Downstream the pit the picture is replicated and at the 8th km a local scour on the riverbed, amounting to more than 1.80-2.00 m, has been measured near the foundation of a massive bridge in the centre of city of Plovdiv. Such assessments of dynamic resources of sand and gravel materials are expected to serve for the purposes of gradual limitation of this activity in river sections close to renewable resources. The amount of sediment load, which may be abstracted in the area of the Orizare quarry in Bulgaria on a yearly basis has been calculated as 6000 m^3/a. It ensures that the resources will not be exhausted and irreversible distortion of the riverbed will be prevented. This is an environmentally safe limit.  相似文献   

9.
A model framework is presented for simulating nitrogen and carbon cycling at the sediment–water interface, and predicting oxygen consumption by oxidation reactions inside the sediments. Based on conservation of mass and invoking simplifying assumptions, a coupled system of diffusive–reactive partial differential equations is formulated for two-layer conceptual model of aerobic–anaerobic sediments. Oxidation reactions are modeled as first-order rate processes and nitrate is assumed to be consumed entirely in the anoxic portion of the sediments. The sediments are delineated into a thin oxygenated surface layer whose thickness is equal to the oxygen penetration depth, and a lower, but much thicker anoxic layer. The sediments are separated from the overlying water column by a relatively thin boundary layer through which mass transfer is diffusion controlled. Transient solutions are derived using the method of Laplace transform and Green’s function, which relate pore-water concentrations of the constituents to their concentrations in the bulk water and to the flux of decomposable settling organic matter. Steady-state pore-water concentrations are also obtained including expressions for the extent of methane saturation zone and methane gas flux. A relationship relating the sediment oxygen demand (SOD) to bulk water oxygen is derived using the two-film concept, which in combination with the depth-integrated solutions forms the basis for predicting the extent of oxygen penetration in the sediment. Iterative procedure and simplification thereof are proposed to estimate the extent of methane saturation zone and thickness of the aerobic layer as functions of time. Sensitivity of steady-state solutions to key parameters illustrates sediment processes interactions and synergistic effects. Simulations indicate that for a relatively thin diffusive boundary layer, d, oxygen uptake is limited by biochemical processes inside the sediments, whereas for a thick boundary layer oxygen transfer through the diffusive boundary layer is limiting. The results show an almost linear relationship between steady-state sediment oxygen demand and bulk water oxygen. For small d methane and nitrogen fluxes are sediment controlled, whereas for large d they are controlled by diffusional transfer through the boundary layer. It is shown that the two-layer model solution converges to the one-layer model (anaerobic layer) solution as the thickness of the oxygenated layer approaches zero, and that the transient solutions approach asymptotically their corresponding steady-state solutions.  相似文献   

10.
An investigation has been conducted to identify the key parameters that are likely to scale laboratory sediment deposits to the field scale. Two types of bed formation were examined: one where sediment is manually placed and screeded and the second where sediment is fed into a running flume. This later technique created deposits through sequential cycles of sediment transport and deposition. Detailed bed surface topography measurements have been made over a screeded bed and three fed beds. In addition, bulk subsurface porosity and hydraulic conductivity have been measured. By comparing the four beds, results revealed that certain physical properties of the screeded bed were clearly different from those of the fed beds. The screeded bed had a random organization of grains on both the surface and within the subsurface. The fed beds exhibited greater surface and subsurface organization and complexity, and had a number of properties that closely resembled those found for water‐worked gravel beds. The surfaces were water‐worked and armoured and there was preferential particle orientation and direction of imbrication in the subsurface. This suggested that fed beds are able to simulate, in a simplified manner, both the surface and subsurface properties of established gravel‐bed river deposits. The near‐bed flow properties were also compared. It revealed that the use of a screeded bed will typically cause an underestimation in the degree of temporal variability in the flow. Furthermore, time‐averaged streamwise velocities were found to be randomly organized over the screeded bed but were organized into long streamwise flow structures over the fed beds. It clearly showed that caution should be taken when comparing velocity measurements over screeded beds with water‐worked beds, and that the formation of fed beds offers an improved way of investigating intragravel flow and sediment–water interface exchange processes in gravel‐bed rivers at a laboratory scale. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Vertical sediment exchange is a fundamental component of bedload transport in gravel‐bed channels. This paper describes the characteristic depth of exchange achieved over a long flood series. Analysis is based on 11 recoveries of magnetically tagged gravels deployed in Carnation Creek, Canada, completed between 1990 and 2008. Vertical grain exchange mixes gravels throughout the streambed relatively rapidly. Within one to eight floods the mean burial depth approaches two times the surface layer thickness, quantified by the 90th percentile of the size distribution. Finer gravels are mixed more rapidly into the bed than coarser gravels. Both active and passive grain exchanges throughout most of the bed produce the overall vertical distribution of marked grains. Gravel exchanges exhibit fairly consistent patterns once tracers are well mixed by large floods. Results highlight the role of flood sequence in determining exchange depths, support the notion of an upper limit to exchange, and underscore the importance of passive grain exchange. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
采用天然河道实测资料分析和实验室试验分析方法对伊拉克底格里斯河摩苏尔55km河段的河道床沙组成进行研究,目的是分析河床表层及底层泥沙组成,以及该河段的床沙粗化条件.通过收集天然河道的床沙资料,对沙样进行实验室分析,结果表明:底格里斯河摩苏尔河段床沙已形成粗化:一般河床表层泥沙颗粒大小分布随着河段距离的增加而减小,床沙接近于均勻分布,表层床沙沙样颗粒中圆盘形、 球形、柱形和片状分别为48.34%、25.2%、15.34%和11.08%.在床沙的表层和底层泥沙以粗沙砾石为主,分别为74%和36%.  相似文献   

13.
We examined the impact of Hydropsychidae caddisfly larvae on the incipient motion of two sizes of narrowly graded fine‐gravel (4–6 and 6–8 mm). This impact was assessed relative to the collective impact of other abiotic and biotic processes that are potentially important conditioning agents of fine‐gravels. Trays of gravel were placed in the River Soar, Leicestershire, UK, where they were colonized to natural densities by caddisfly larvae. Identical trays that were surrounded by a 250 µm mesh were also deployed, preventing colonization but allowing field conditioning of sediments, including minor reworking of grains and biofilm development. After 21 days in the river, trays were removed to a laboratory flume where grain entrainment stresses were established. In addition to the colonized and conditioned treatments, critical shear stresses were measured for identical sediments that were not placed in the river (laboratory gravels). Gravels that were colonized by Hydropsychidae required significantly greater shear stresses for entrainment than conditioned trays (≤ 0·002), however, there was no significant difference between conditioned and laboratory gravels. This implies that the presence of caddisfly can be a more important influence on fine‐gravel stability than some conditioning processes. Shields parameter was compared across treatments and across the two gravel size‐fractions using two‐way ANOVA. No significant differences or interactions were observed, indicating that 4–6 mm gravel was stabilized to a similar degree as 6–8 mm gravel by conditioning and colonization processes. Our results extend earlier studies in two important ways: (1) entrainment stresses were established for fine gravels that were colonized at natural densities, under natural stream conditions; and (2) the caddisfly effect was measured relative to both field‐conditioned and unconditioned laboratory controls. The temporal and spatial distribution of silk‐spinning caddisfly larvae suggests that they have the potential to influence fine‐sediment mobility in many rivers, worldwide. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The flow magnitude and timing from hydroelectric dams in the Snake River Basin of the Pacific north‐western US is managed in part for the benefit of salmon. The objective of this research was to evaluate the effects of Hells Canyon Dam discharge operations on hydrologic exchange flows between the river and riverbed in Snake River fall Chinook salmon spawning areas. Interactions between river water and pore water within the upper 1 m of the riverbed were quantified through the use of self‐contained temperature and water level data loggers suspended inside of piezometers. The data were recorded at 20 min intervals over a period of 200 days when the mean daily discharge was 218–605 m3 s?1, with hourly stage changes as large as 1·9 m. Differences in head pressure between the river and riverbed were small, often within ± 2 cm. Measured temperature gradients in the riverbed indicated significant interactions between the surface and subsurface water. At the majority of sites, neither hydraulic nor temperature gradients were significantly affected by either short‐ or long‐term changes in discharge operations from Hells Canyon Dam. Only 2 of 14 study sites exhibited acute flux reversals between the river and riverbed resulting from short‐term, large magnitude changes in discharge. The findings suggest that local scale measurements may not be wholly explanatory of the hydrological exchange between the river and riverbed. The processes controlling surface water exchange at the study sites are likely to be bedform‐induced advective pumping, turbulence at the riverbed surface, and large‐scale hydraulic gradients along the longitudinal profile of the riverbed. By incorporating the knowledge of hydrological exchange processes into water management planning, regional agencies will be better prepared to manage the limited water resources among competing priorities that include salmon recovery, flood control, irrigation supply, hydropower production, and recreation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Spatial and temporal variability in ground water–surface water interactions in the hyporheic zone of a salmonid spawning stream was investigated. Four locations in a 150‐m reach of the stream were studied using hydrometric and hydrochemical tracing techniques. A high degree of hydrological connectivity between the riparian hillslope and the stream channel was indicated at two locations, where hydrochemical changes and hydraulic gradients indicated that the hyporheic zone was dominated by upwelling ground water. The chemistry of ground water reflected relatively long residence times and reducing conditions with high levels of alkalinity and conductivity, low dissolved oxygen (DO) and nitrate. At the other locations, connectivity was less evident and, at most times, the hyporheic zone was dominated by downwelling stream water characterized by high DO, low alkalinity and conductivity. Substantial variability in hyporheic chemistry was evident at fine (<10 m) spatial scales and changed rapidly over the course of hydrological events. The nature of the hydrochemical response varied among locations depending on the strength of local ground water influence. It is suggested that greater emphasis on spatial and temporal heterogeneity in ground water–surface water interactions in the hyporheic zone is necessary for a consideration of hydrochemical effects on many aspects of stream ecology. For example, the survival of salmonid eggs in hyporheic gravels varied considerably among the locations studied and was shown to be associated with variation in interstitial chemistry. River restoration schemes and watershed management strategies based only on the surface expression of catchment characteristics risk excluding consideration of potentially critical subsurface processes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Permeability of a streambed is an important factor regulating nutrient and oxygen availability for aquatic biota. In order to investigate the relationship, an accurate permeability should be measured. However, it is difficult to measure permeability in a coarse gravel bed using a conventional permeability test. Moreover, turbulent flow may occur in coarse bed material, and then deviations from Darcy's law do occur. Thus, permeability calculated following Darcy's law may be overestimated under turbulent flow conditions and should be corrected. The packer test can be used in highly permeable gravel beds. We developed a field method applicable to a gravel bed using the packer test and derived an equation adopting a law of turbulent flow to study the problems under any type of flow condition. The accuracy of the equation was examined using a laboratory flume with a gravel bed. The results suggested that permeability calculated from Hvorslev's equation is overestimated for turbulent flow. In contrast, our equation, developed here, could evaluate permeability accurately under any type of flow condition. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A 2D MATHEMATICAL MODEL FOR THE BED DEFORMATION IN THE LOWER YELLOW RIVER   总被引:2,自引:0,他引:2  
1 BANK EROSION IN THE LOWER YELLOW RIVER In alluvial rivers, riverbeds are always in a state of transition and development. Two kinds of deformations result for the fluvial process according to certain basic characteristics. One is longitudinal deformation that is characterized by the deformation of a riverbed in the direction of streamwise flow such as riverbed scour or deposition. The other is transverse or lateral deformation that is distinguished by the deformation of a riverb…  相似文献   

18.
Acquiring high resolution topographic data of natural gravel surfaces is technically demanding in locations where the bed is not exposed at low water stages. Often the most geomorphologically active surfaces are permanently submerged. Gravel beds are spatially variable and measurement of their detailed structure and particle sizes is essential for understanding the interaction of bed roughness with near‐bed flow hydraulics, sediment entrainment, transport and deposition processes, as well as providing insights into the ecological responses to these processes. This paper presents patch‐scale laboratory and field experiments to demonstrate that through‐water terrestrial laser scanning (TLS) has the potential to provide high resolution digital elevation models of submerged gravel beds with enough detail to depict individual grains and small‐scale forms. The resulting point cloud data requires correction for refraction before registration. Preliminary validation shows that patch‐scale TLS through 200 mm of water introduces a mean error of less than 5 mm under ideal conditions. Point precision is not adversely affected by the water column. The resulting DEMs can be embedded seamlessly within larger sub‐aerial reach‐scale surveys and can be acquired alongside flow measurements to examine the effects of three‐dimensional surface geometry on turbulent flow fields and their interaction with instream ecology dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The process of dam removal establishes the channel morphology that is later adjusted by high-flow events. Generalities about process responses have been hypothesized, but broad applicability and details remain a research need. We completed laboratory experiments focused on understanding how processes occurring immediately after a sediment release upon dam removal or failure affect the downstream channel bed. Flume experiments tested three sediment mixtures at high and low flow rates. We measured changes in impounded sediment volume, downstream bed surface, and rates of deposition and erosion as the downstream bed adjusted. Results quantified the process responses and connected changes in downstream channel morphology to sediment composition, temporal variability in impounded sediment erosion, and spatial and temporal rates of bedload transport. Within gravel and sand sediments, the process response depended on sediment mobility. Dam removals at low flows created partial mobility with sands transporting as ripples over the gravel bed. In total, 37% of the reservoir eroded, and half the eroded sediment remained in the downstream reach. High flows generated full bed mobility, eroding sands and gravels into and through the downstream reach as 38% of the reservoir eroded. Although some sediment deposited, there was net erosion from the reach as a new, narrower channel eroded through the deposit. When silt was part of the sediment, the process response depended on how the flow rate influenced reservoir erosion rates. At low flows, reservoir erosion rates were initially low and the sediment partially exposed. The reduced sediment supply led to downstream bed erosion. Once reservoir erosion rates increased, sediment deposited downstream and a new channel eroded into the deposits. At high flows, eroded sediment temporarily deposited evenly over the downstream channel before eroding both the deposits and channel bed. At low flows, reservoir erosion was 17–18%, while at the high flow it was 31–41%.  相似文献   

20.
《国际泥沙研究》2023,38(1):128-140
The porosity of gravel riverbed material often is an essential parameter to estimate the sediment transport rate, groundwater-river flow interaction, river ecosystem, and fluvial geomorphology. Current methods of porosity estimation are time-consuming in simulation. To evaluate the relation between porosity and grain size distribution (GSD), this study proposed a hybrid model of deep learning Long Short-Term Memory (LSTM) combined with the Discrete Element Method (DEM). The DEM is applied to model the packing pattern of gravel-bed structure and fine sediment infiltration processes in three-dimensional (3D) space. The combined approaches for porosity calculation enable the porosity to be determined through real time images, fast labeling to be applied, and validation to be done. DEM outputs based on the porosity dataset were utilized to develop the deep learning LSTM model for predicting bed porosity based on the GSD. The simulation results validated with the experimental data then segregated into 800 cross sections along the vertical direction of gravel pack. Two DEM packing cases, i.e., clogging and penetration are tested to predict the porosity. The LSTM model performance measures for porosity estimation along the z-direction are the coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error (MAE) with values of 0.99, 0.01, and 0.01 respectively, which is better than the values obtained for the Clogging case which are 0.71, 0.14, and 0.03, respectively. The use of the LSTM in combination with the DEM model yields satisfactory results in a less complex gravel pack DEM setup, suggesting that it could be a viable alternative to minimize the simulation time and provide a robust tool for gravel riverbed porosity prediction. The simulated results showed that the hybrid model of the LSTM combined with the DEM is reliable and accurate in porosity prediction in gravel-bed river test samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号