首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trends of the three hydro-meteorological variables precipitation, temperature and stream flow, represented by 13, 12, and 9 gauging stations, respectively, within the Abay/Upper Blue Nile basin have been studied to support water management in the region. The Trends were evaluated over different time periods depending on data availability at the stations. The statistical Mann–Kendall and Pettitt tests have been used to assess trends and change points respectively. The tests have been applied to mean annual, monthly, seasonal, 1- and 7-days annual minimum and maximum values for streamflow, while mean annual, monthly and seasonal timescales were applied to meteorological variables. The results are heterogeneous and depict statistically significant increasing/decreasing trends. Besides, it showed significant abrupt change of point upward/downward shift for streamflow and temperature time series. However, precipitation time series did not show any statistically significant trends in mean annual and seasonal scales across the examined stations.Increasing trends in temperature at different weather stations for the mean annual, rainy, dry and small rainy seasons are apparent. The mean temperature at Bahir Dar – typical station in the Lake Tana sub basin, has been increasing at the rate of about 0.5 °C/decade, 0.3 °C/decade in rainy season (June–September), 0.6 °C/decade in small rainy season (March–May), and 0.6 °C/decade in dry season (October–February). Other stations in the Abay/Upper Blue Nile show comparable results. Overall it is found that trends and change point times varied considerably across the stations and catchment to catchment. Identified significant trends can help to make better planning decisions for water management. However, the cause attributes to the observed changes in hydro-meteorological variables need further research. In particular the combined effects of land use/land cover change and climate variability on streamflow of Abay/Blue Nile basin and its tributaries needs to be understood better.  相似文献   

2.
A statistical test on climate and hydrological series from different spatial resolution could obtain different regional trend due to spatial heterogeneity and its temporal variability. In this study, annual series of the precipitation heterogeneity indices of concentration index (CI) and the number of wet days (NW) along with annual total amount of precipitation were calculated based on at‐site daily precipitation series during 1962–2011 in the headwater basin of the Huaihe River, China. The regional trends of the indices were first detected based on at‐site series by using the aligned and intrablock methods, and field significance tests that consider spatial heterogeneity over sites. The detected trends were then compared with the trends of the regional index series derived from daily areal average precipitation (DAAP), which averages at‐site differences and thus neglects spatial heterogeneity. It was found that the at‐site‐based regional test shows increasing trends of CI and NW in the basin, which follows the test on individual sites that most of sites were characterized by increasing CI and NW. However, the DAAP‐derived regional series of CI and NW were tested to show a decreasing trend. The disparity of the regional trend test on at‐site‐based regional series and the DAAP‐derived regional series arises from a temporal change of the spatial heterogeneity, which was quantified by the generalized additive models for location, scale, and shape. This study highlights that compared with averaging indices, averaging at‐site daily precipitation could lead to an error in the regional trend inference on annual precipitation heterogeneity indices. More attention should be paid to temporal variability in spatial heterogeneity when data at large scales are used for regional trend detection on hydro‐meteorological events associated with intra‐annual heterogeneity.  相似文献   

3.
Abstract

The spatio-temporal variability of daily precipitation series was investigated in a semiarid region of central Macedonia in northern Greece, Ten years of daily rainfall records for seven stations in the region constituted the data base. The spatial characteristics were examined by drawing composite correlation diagrams for the cool (October-March) season and the warm (April-September) season, and the results confirmed the regional homogeneity of the data sets. Furthermore, the temporal analysis indicated that the non-rainy days constituted the major portion of days throughout the year at all the stations. Similarly, light rainfall represented the majority of rainy days. Moreover, the annual rainfall variation showed high values in March, April and November with low values occurring in the summer and autumn. A sharp increase of rainfall between the 185th and the 195th day of the year must be taken into account when the harvest is scheduled. Harmonic and Power Spectrum analyses applied to the annual variation of rain depths using 5-day intervals revealed significant periodicities of 26, 122, 365 and 55 days. Finally the analysis of the annual variation of rain occurrences. revealed periodicities of 365 and 122 days.  相似文献   

4.
ABSTRACT

This study assesses the climate change impact on rainfall and drought incidents across Nigeria. Linear regression, Mann-Kendall tests and lag-1 serial correlation were adopted to analyse the trends and variability of rainfall and drought at 18 synoptic stations. Analysis of annual precipitation series indicates an increase in rainfall amounts at all stations, except Minna, Gusau and Yola. Seventeen of the 18 stations recorded at least one main drought period, between 1983 and 1987. A decreasing trend for the standardized precipitation index SPI-12 series was seen at Yola station, while the other stations showed an increasing trend. Also, Nigeria witnessed more annual rainfall totals but with high variability within the rainy months of the year in the first 15 years of the 21st century compared to the 20th century. Such variability in rainfall may have a significant effect on groundwater resources and the hydrology of Nigeria.  相似文献   

5.
Interannual variability in western US precipitation   总被引:6,自引:0,他引:6  
Low-frequency (interannual or longer period) climatic variability is of interest, because of its significance for the understanding and prediction of protracted climatic anomalies. Since precipitation is one of the key variables driving various hydrologic processes, it is useful to examine precipitation records to better understand long-term climate dynamics. Here, we use the multi-taper method of spectral analysis to analyze the monthly precipitation time series (both occurrence and amount) at a few stations along a meridional transect from Priest River, ID to Tucson, AZ. We also examine spectral coherence between monthly precipitation and widely used atmospheric indices, such as the central Northern Pacific (CNP) and southern oscillation index (SOI). This analysis reveals statistically significant ‘signals' in the time series in the 5–7 and 2–3 year bands. These interannual signals are consistent with those related to El-Niño southern oscillation (ENSO) and quasi-biennial variability identified by others.  相似文献   

6.
An analysis of spatial and temporal trends of precipitation in Beijiang River basin, Guangdong Province, China during 1959–2003 was performed using 17 time series (including monthly, annual, wet season, dry season, early flood period and late flood period totals) both on station based and sub‐basin based data sets. Two nonparametric methods (Mann–Kendall and Sen's T) were used for data analysis. The results showed that (1) downward trends of temporal distribution were mostly detected during the early flood period, especially in May, while upward trends were observed in July and the dry season; (2) downward trends of spatial distribution were mostly detected in the southern Beijiang River basin, while upward trends were observed north of this area. Our results indicated a delayed rainy season and a northward trend of the precipitation belt compared to recent years. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Statistical characteristics of detectable inhomogeneities [IHs] in more than 600 observed meteorological time series have been investigated using 16 objective homogenisation methods. Forty and 100 year long series of monthly or annual characteristics of surface air temperature, precipitation total and relative air humidity from the Czech Republic and Hungary were examined. The area of the part of the Czech observing network used here is smaller, and the density of sites is larger, than in the Hungarian network, resulting in higher spatial correlations among data in the Czech dataset relative to the Hungarian dataset. Time series with low number of gaps were supplied with interpolated data. Before homogenisation relative time series were created, using weighted averages of time series from the same geographical region as reference series. For ease of comparison, the magnitudes of the detected IHs are normalised with the standard deviation of the noise in the relative time series. Results show that observed meteorological time series usually contain large number of small IHs, and that the magnitude distribution of IHs from different data segments are surprisingly similar. Effects of different spatial coherences on the results are discussed.  相似文献   

8.
Wavelet and cross-wavelet analysis are used to identify and describe spatial and temporal variability in Canadian seasonal precipitation, and to gain further insights into the dynamical relationship between the seasonal precipitation and the dominant modes of climate variability in the Northern Hemisphere. Results from applying continuous wavelet transform to seasonal precipitation series from 201 stations selected from Environment Canada Meteorological Network reveal striking climate-related features before and after the 1940s. The span of available observations, 1900–2000, allows for depicting variance and covariance for periods up to 12 years. Scale-averaged wavelet power spectra are used to simultaneously assess the temporal and spatial variability in each set of 201 seasonal precipitation time series. The most striking feature, in the 2–3-year period and in the 3–6-year period—the 6–12-year period is dominated by white noise and is not considered further—is a net distinction between the timing and intensity of the temporal variability in autumn, winter and spring–summer precipitation. It is found that the autumn season exhibits the most intense activity (or variance) in both the 2–3 year and the 3–6 year periods. The winter season corresponds to the least intense activity for the 2–3 year period, but it exhibits more activity than the spring–summer for the 3–6 year period.Cross-wavelet analysis is provided between the seasonal precipitation and four selected climatic indices: the Pacific North America (PNA), the North Atlantic Oscillation (NAO), the Northern Hemisphere Annular Mode (NAM) originally called the Arctic Oscillation, and the sea surface temperature series over the Niño-3 region (ENSO). The wavelet cross-spectra revealed coherent space–time variability of the climate–precipitation relationship throughout Canada. It is shown that strong climate/precipitation activity (or covariance) in the 2–6 year period starts after 1940 whatever the climatic index and the season. Prior to year 1940, only local and weaker 2–6 year activity is revealed in western Canada essentially in winter and autumn, but overall a non-significant precipitation/climate relationship is observed prior to 1940. Correlation analysis in the 2–6 year band between the seasonal precipitation and the selected climatic indices revealed strong positive correlations with the ENSO, the NAO, and the NAM in eastern and western Canada for the post-1940 period. For the period prior to 1940, the correlation tend be negative for all the indices whatever the region. A particular feature in the correlation analysis results is the consistently stronger and positive NAM–precipitation correlations in all the regions since 1940. The cross-wavelet spectra and the correlation analysis in the 2–6 year band suggest the presence of a change point around 1940 in Canadian seasonal precipitation—that is found to be more likely related to NAM dynamics.  相似文献   

9.
On the basis of daily precipitation records at 76 meteorological stations in the arid region, northwest of China, the spatial and temporal distribution of mean precipitation and extremes were analysed during 1960–2010. The Mann–Kendall trend test and linear least square method were utilized to detect monotonic trends and magnitudes in annual and seasonal mean precipitation and extremes. The results obtained indicate that both the mean precipitation and the extremes have increased except in consecutive dry days, which showed the opposite trend. The changes in amplitude of both mean precipitation and extremes show seasonal variability. On an annual basis, the number of rain days (R0.1) has significantly increased. Meanwhile, the precipitation intensity as reflected by simple daily intensity index (SDII), number of heavy precipitation days (R10), very wet days (R95p), max 1‐day precipitation amount (RX1day) and max 5‐day precipitation amount (RX5day) has also significantly increased. This suggests that the precipitation increase in the arid region is due to the increase in both precipitation frequency and intensity. Trends in extremes are very highly correlated with mean trends of precipitation. The spatial correlation between trends in extremes and trends in the mean is stronger for winter (DJF) than for annual and other seasons. The regional annual and seasonal precipitation and extremes are observed the step jump in mean in the late 1980s. Overall, the results of this study are good indicators of local climate change, which will definitely enhance human mitigation to natural hazards caused by precipitation extremes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Using the Shannon entropy, the space–time variability of rainfall and streamflow was assessed for daily rainfall and streamflow data for a 10-year period from 189 stations in the northeastern region of Brazil. Mean values of marginal entropy were computed for all observation stations and entropy maps were then constructed for delineating annual and seasonal characteristics of rainfall and streamflow. The Mann-Kendall test was used to evaluate the long-term trend in marginal entropy as well as relative entropy for two sample stations. The marginal entropy values of rainfall and streamflow were higher for locations and periods with the highest amounts of rainfall. The entropy values were higher where rainfall was higher. This was because the probability distributions of rainfall and the resulting streamflow were more uniform and less skewed. The Shannon entropy produced spatial patterns which led to a better understanding of rainfall and streamflow characteristics throughout the northeastern region of Brazil. The total relative entropy indicated that rainfall and streamflow carried the same information content at annual and rainy season time scales.  相似文献   

11.
This study draws attention on the extreme precipitation changes over the eastern Himalayan region of the Teesta river catchment. To explore the precipitation variability and heterogeneity, observed (1979–2005) and statistically downscaled (2006–2100) Coupled Model Intercomparison Project Phase Five earth system model global circulation model daily precipitation datasets are used. The trend analysis is performed to analyze the long-term changes in precipitation scenarios utilizing non-parametric Mann–Kendall (MK) test, Kendall Tau test, and Sen’s slope estimation. A quantile regression (QR) method has been applied to assess the lower and upper tails changes in precipitation scenarios. Precipitation extreme indices were generated to quantify the extremity of precipitation in observed and projected time domains. To portrait the spatial heterogeneity, the standard deviation and skewness are computed for precipitation extreme indices. The results show that the overall precipitation amount will be increased in the future over the Himalayan region. The monthly time series trend analysis based results reflect an interannual variability in precipitation. The QR analysis results showed significant increments in precipitation amount in the upper and lower quantiles. The extreme precipitation events are increased during October to June months; whereas, it decreases from July to September months. The representative concentration pathway (RCP) 8.5 based experiments showed extreme changes in precipitation compared to RCP2.6 and RCP4.5. The precipitation extreme indices results reveal that the intensity of precipitation events will be enhanced in future time. The spatial standard deviation and skewness based observations showed a significant variability in precipitation over the selected Himalayan catchment.  相似文献   

12.
Understanding the variability in monthly rainfall amounts is important for the management of water resources. We use entropy, a measure of variability, to quantify the rainfall variability in Australia. We define the entropy of stable rainfall (ESR) to measure the long‐term average rainfall variability across the months of the year. The stations in northern Australia observe substantially more variability in rainfall distributions and stations in southern Australia observe less variability in rainfall distribution across the months of the year. We also define the consistency index (CI) to compare the distribution of the monthly rainfall for a given year with the long‐term average monthly rainfall distribution. Higher value of the CI indicates the rainfall in the year is consistent with the overall long‐term average rainfall distribution. Areas close to the coastline in northern, southern and eastern Australia observe more consistent rainfall distribution in individual years with the long‐term average rainfall distribution. For the studied stations, we categorize the years into different potential water resource availability on the basis of annual rainfall amount and CI. For almost all Australian rainfall stations, El Niño years have a greater risk of having below median and relatively inconsistent rainfall distribution than La Niña years. The results may be helpful for developing area‐specific water usage strategies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
D. Markovic  M. Koch 《水文研究》2014,28(4):2202-2211
Long‐term variations and temporal scaling of mean monthly time series of river flow, precipitation, temperature, relative humidity, air pressure, duration of bright sunshine, degree of cloud cover, short wave radiation, wind speed and potential evaporation within or in vicinity of the German part of the Elbe River Basin are analyzed. Statistically significant correlations between the 2–15 year scale‐averaged wavelet spectra of the hydroclimatic variables and the North Atlantic Oscillation‐ and Arctic Oscillation index are found which suggests that such long‐term patterns in hydroclimatic time series are externally forced. The Hurst parameter estimates (H) based on the Detrended Fluctuation Analysis (DFA) indicate persistence for discharge, precipitation, wind speed, air pressure and the degree of cloud cover, all having an annual cycle and a broad low‐frequency distribution. Also, DFA H parameter estimates are higher for discharge than for precipitation. The major long‐term quasi‐periodic variability modes of precipitation detected using Singular Spectrum Analysis coincide with those detected in the discharge time series. Upon subtraction of these low‐frequency quasi‐periodic modes, the DFA H parameter estimates suggest absence of the persistence for both precipitation and discharge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Partitioning of precipitation into evapotranspiration and runoff is controlled by climate and catchment characteristics. The degree of control exerted by these factors varies with the spatial and temporal scales of processes modeled. The Budyko framework or the “limits” concept was used to model water balance at four temporal scales (mean annual, annual, monthly and daily). The method represents a top-down approach to hydrologic modeling and is expected to achieve parsimony of model parameters. Daily precipitation, potential evapotranspiration, and streamflow from 265 catchments in Australia were used. On a mean annual basis, the index of dryness defined as the ratio of potential evapotranspiration to precipitation was confirmed to be a dominant factor in determining the water balance with one model parameter. Analysis of the data, however, suggested increased model complexity is necessary on finer time scale such as monthly. In response, the Budyko framework for mean annual water balance was extended to include additional factors and this resulted in a parsimonious lumped conceptual model on shorter-time scale. The model was calibrated and tested against measured streamflow at variable time scales and showed promising results. The strengths of the model are consistent water balance relationships across different time scales, and model parsimony and robustness. As result, the model has the potential to be used to predict streamflow for ungauged catchments.  相似文献   

15.
中国异常增暖来年江淮流域易发生大洪水   总被引:1,自引:0,他引:1       下载免费PDF全文
在1987年以来全球气温明显增高的同时,中国气温也显著增高,1997年达到了峰值,2006年又出现了次峰值.为搞清异常增暖对中国旱涝等灾害的发生可能带来的影响,本文重点统计分析了中国年平均气温对全球年平均气温的响应关系,并分析研究了1951~2006年期间中国月年平均气温的年际变化特征和汛期主要多雨带类型及发生严重洪涝区域之间的对应关系.结果发现:(1)3个中国年平均气温异常偏高但8月气温不高的来年汛期主要多雨带和严重洪涝区域都发生在淮河流域(3/3);(2)5个年平均气温偏高且8月气温也明显偏高的来年汛期长江流域发生了大洪水和严重洪涝(5/5),特别是其中2个8月气温特高的来年(1954、1998年)汛期长江流域发生了特大洪水和严重洪涝(2/2).对这个前兆强信号的发现和揭示,不但证明了全球和中国异常增暖对来年中国汛期水旱灾害的重大影响,也对准确预测中国汛期主要多雨带分布类型和江淮流域的大洪水和特大洪水有特别重要的应用价值.  相似文献   

16.
Changing climate and precipitation patterns make the estimation of precipitation, which exhibits two-dimensional and sometimes chaotic behavior, more challenging. In recent decades, numerous data-driven methods have been developed and applied to estimate precipitation; however, these methods suffer from the use of one-dimensional approaches, lack generality, require the use of neighboring stations and have low sensitivity. This paper aims to implement the first generally applicable, highly sensitive two-dimensional data-driven model of precipitation. This model, named frequency based imputation (FBI), relies on non-continuous monthly precipitation time series data. It requires no determination of input parameters and no data preprocessing, and it provides multiple estimations (from the most to the least probable) of each missing data unit utilizing the series itself. A total of 34,330 monthly total precipitation observations from 70 stations in 21 basins within Turkey were used to assess the success of the method by removing and estimating observation series in annual increments. Comparisons with the expectation maximization and multiple linear regression models illustrate that the FBI method is superior in its estimation of monthly precipitation. This paper also provides a link to the software code for the FBI method.  相似文献   

17.
Rapid population growth and increased economic activity impose an urgent challenge on the sustainability of water resources in Beijing. Understanding the spatial and temporal variability of precipitation is of the upmost importance in order to sustain the region's water resources. Two time series, one long term (1724–2010) from a single meteorological station and a shorter time series (1980–2010) from 20 different meteorological stations within the Beijing area, were analysed using Linear Regression, Moving Average, Mann–Kendall, Rescaled Range and Spatial Interpolation methods. Results from both the long‐ and short‐term meteorological data show a mean annual precipitation rate of 600 mm and 540 mm respectively. Annual precipitation rates have decreased during the 21st century by an estimated 100 mm or 16% in comparison to the 1990s. The 1980–2010 data show an increase in precipitation during the early 1990s followed by a sharp decrease during the subsequent years. The change of annual precipitation with time is more random and diverse in comparison to space. The main local impact factors (terrain, urbanization and elevation) and how they work on the local precipitation especially the spatial diversity are identified qualitatively. Generally speaking, (1) the annual precipitation of the plain area is more than that of the mountainous area (terrain effect), (2) the annual precipitation of the urban area in the plain area is obviously more than that of the surrounding suburb area (urbanization effect) and (3) the annual precipitation of the lower location is approximately more than that of the higher location (elevation effect). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
新疆北部降水的气候分布特片及其对ENSO的响应   总被引:1,自引:2,他引:1  
分析研究了新疆北部地区近50年(1951-2000年)全年各月降水的气候分布特征和各季降水的年际变化规律,重点揭示了北疆多雨季节(4-7月)及其各月降水量对赤道东太平洋的海温SST和南方涛动指数SOI的显著响应关系,并用前期SST和SOI作为预报因子,建立了北疆地区雨季水量的预报方程。该方程可用于北疆地区雨季降水量的长期预报。  相似文献   

19.
Global warming is likely modifying the hydrological cycle of forested watersheds. This report set as objectives to: a) assess the hydrological variables interception loss, I, potential and actual evapo-transpiration, E, Et, runoff, Q, and soil moisture content, θ; b) evaluate whether these variables are presenting consistent trends or oscillations that can be associated to global warming or climate variability; and c) relate θ to the number of wildfires and the burned area in Durango, Mexico. A mass balance approach estimated daily variables of the water cycle using sub-models for I and Et to calculate Q and θ for a time series from 1945 to 2007. Regression and auto-regressive and moving averaging (ARIMA) techniques evaluated the statistical significance of trends. The cumulative standardized z value magnified and ARIMA models projected statistically similar monthly and annual time series data of all variables of the water cycle. Regression analysis and ARIMA models showed monthly and annual P, I, E, and Et, Q, and θ do not follow consistent up or downward linear tendencies over time with statistical significance; they rather follow oscillations that could be adequately predicted by ARIMA models (r2 ≥ 0.70). There was a consistent statistical association (p ≤ 0.05) of θ with the number of wildfires and the area burned regardless of the different spatial scales used in evaluating these variables. The analysis shows seasonal variability is increasing over time as magnifying pulses of dryness and wetness, which may be the response of the hydrological cycle to climate change. Further research must center on using longer time series data, testing seasonal variability with additional statistical analysis, and incorporating new variables in the analysis.  相似文献   

20.
The simulations of dynamic, spatially distributed non-linear models are impacted by the degree of spatial and temporal aggregation of their input parameters and variables. This paper deals with the impact of these aggregations on the assessment of irrigation scheme performance by simulating water use and crop yield. The analysis was carried out on a 7000 ha irrigation scheme located in Southern Spain. Four irrigation seasons differing in rainfall patterns were simulated (from 1996/1997 to 1999/2000) with the actual soil parameters and with hypothetical soil parameters representing wider ranges of soil variability. Three spatial aggregation levels were considered: (I) individual parcels (about 800), (II) command areas (83) and (III) the whole irrigation scheme. Equally, five temporal aggregation levels were defined: daily, weekly, monthly, quarterly and annually.

The results showed little impact of spatial aggregation in the predictions of irrigation requirements and of crop yield for the scheme. The impact of aggregation was greater in rainy years, for deep-rooted crops (sunflower) and in scenarios with heterogeneous soils. The highest impact on irrigation requirement estimations was in the scenario of most heterogeneous soil and in 1999/2000, a year with frequent rainfall during the irrigation season: difference of 7% between aggregation levels I and III was found. Equally, it was found that temporal aggregation had only significant impact on irrigation requirements predictions for time steps longer than 4 months. In general, simulated annual irrigation requirements decreased as the time step increased. The impact was greater in rainy years (specially with abundant and concentrated rain events) and in crops which cycles coincide in part with the rainy season (garlic, winter cereals and olive).

It is concluded that in this case, average, representative values for the main inputs of the model (crop, soil properties and sowing dates) can generate results within 1% of those obtained by providing spatially specific values for about 800 parcels.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号