首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constrained scaling approach for design rainfall estimation   总被引:1,自引:1,他引:0  
Rainfall depth (or intensity) of the same frequency should follow a non-decreasing relationship with rainfall duration. However, due to the use of finite samples and sampling error, rainfall frequency analysis could yield rainfall intensity (depth)–frequency (IDF, DDF) curves of different durations that might intersect among them. Results of this kind violate physical reality and it is more likely to occur when rainfall record length gets shorter. To ensure the compliance of the physical reality, this paper applied the scale-invariant approach, in conjunction with constrained regression analysis, to circumvent intersections in rainfall IDF or DDF curves. Rainfall data of various durations at rain gauge in Hong Kong are used to demonstrate the procedure. Numerical investigation indicates that the proposed procedure yields more reasonable results than those based on the conventional frequency analysis, especially when only a small sample of data are available.  相似文献   

2.
Intensity–duration–frequency (IDF) curves of extreme rainfall are used extensively in infrastructure design and water resources management. In this study, a novel regional framework based on quantile regression (QR) is used to estimate rainfall IDF curves at ungauged locations. Unlike standard regional approaches, such as index-storm and at-site ordinary least-squares regression, which are dependent on parametric distributional assumptions, the non-parametric QR approach directly estimates rainfall quantiles as a function of physiographic characteristics. Linear and nonlinear methods are evaluated for both the regional delineation and IDF curve estimation steps. Specifically, delineation by canonical correlation analysis (CCA) and nonlinear CCA (NLCCA) is combined, in turn, with linear QR and nonlinear QR estimation in a regional modelling framework. An exhaustive comparative study is conducted between standard regional methods and the proposed QR framework at sites across Canada. Overall, the fully nonlinear QR framework, which uses NLCCA for delineation and nonlinear QR for estimation of IDF curves at ungauged sites, leads to the best results.  相似文献   

3.
Hydrologic engineering designs and analyses often require the specification of design storm which involves rainfall amount, duration and hyetograph. In practice, the determination of design rainfall in hydrologic engineering applications involves the frequency analysis of extreme rainfalls of different durations and the establishment of rainfall hyetograph for the design event under consideration. Sampling errors exist in the estimation of rainfall depth (or intensity) quantiles from frequency analysis, which will be transmitted in the process of determining the design rainfall hyetograph. This paper presents a practical methodological framework based on the bootstrap resampling scheme to assess the uncertainty features associated with the magnitude of estimated rainfall depth/intensity quantiles and the corresponding design hyetographs. The procedure is implemented to quantify uncertainty of design rainfall hyetograph following the Stormwater Drainage Manual of Hong Kong involving the use of rainfall intensity–duration–frequency (IDF) model. Of particular interesting is that the bootstrap resampling scheme implemented herein is modified to handle unequal record period of annual maximum rainfall data series of different durations and to account for their intrinsic correlations. According to the adopted rainfall IDF model, the design rainfall hyetograph is a function of the IDF model coefficients. Due to the correlation among rainfall quantiles of different durations, the IDF coefficients are found to be strongly related in a nonlinear fashion which should not be ignored in the establishment of the design hyetographs.  相似文献   

4.
Approaches to modeling the continuous hydrologic response of ungauged basins use observable physical characteristics of watersheds to either directly infer values for the parameters of hydrologic models, or to establish regression relationships between watershed structure and model parameters. Both these approaches still have widely discussed limitations, including impacts of model structural uncertainty. In this paper we introduce an alternative, model independent, approach to streamflow prediction in ungauged basins based on empirical evidence of relationships between watershed structure, climate and watershed response behavior. Instead of directly estimating values for model parameters, different hydrologic response behaviors of the watershed, quantified through model independent streamflow indices, are estimated and subsequently regionalized in an uncertainty framework. This results in expected ranges of streamflow indices in ungauged watersheds. A pilot study using 30 UK watersheds shows how this regionalized information can be used to constrain ensemble predictions of any model at ungauged sites. Dominant controlling characteristics were found to be climate (wetness index), watershed topography (slope), and hydrogeology. Main streamflow indices were high pulse count, runoff ratio, and the slope of the flow duration curve. This new approach provided sharp and reliable predictions of continuous streamflow at the ungauged sites tested.  相似文献   

5.
Occurrence of rainstorm events can be characterized by the number of events, storm duration, rainfall depth, inter-event time and temporal variation of rainfall within a rainstorm event. This paper presents a Monte-Carlo based stochastic hourly rainfall generation model considering correlated non-normal random rainstorm characteristics, as well as dependence of various rainstorm patterns on rainfall depth, duration, and season. The proposed model was verified by comparing the derived rainfall depth–duration–frequency relations from the simulated rainfall sequences with those from observed annual maximum rainfalls based on the hourly rainfall data at the Hong Kong Observatory over the period of 1884–1990. Through numerical experiments, the proposed model was found to be capable of capturing the essential statistical features of rainstorm characteristics and those of annual extreme rainstorm events according to the available data.  相似文献   

6.
This work develops a top‐down modelling approach for storm‐event rainfall–runoff model calibration at unmeasured sites in Taiwan. Twenty‐six storm events occurring in seven sub‐catchments in the Kao‐Ping River provided the analytical data set. Regional formulas for three important features of a streamflow hydrograph, i.e. time to peak, peak flow, and total runoff volume, were developed via the characteristics of storm event and catchment using multivariate regression analysis. Validation of the regional formulas demonstrates that they reasonably predict the three features of a streamflow hydrograph at ungauged sites. All of the sub‐catchments in the study area were then adopted as ungauged areas, and the three streamflow hydrograph features were calculated by the regional formulas and substituted into the fuzzy multi‐objective function for rainfall–runoff model calibration. Calibration results show that the proposed approach can effectively simulate the streamflow hydrographs at the ungauged sites. The simulated hydrographs more closely resemble observed hydrographs than hydrographs synthesized using the Soil Conservation Service (SCS) dimensionless unit hydrograph method, a conventional method for hydrograph estimation at ungauged sites in Taiwan. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
In hydrosystem engineering design and analysis, temporal pattern for rainfall events of interest is often required. In this paper, statistical cluster analysis of dimensionless rainfall pattern is applied to identify representative temporal rainfall patterns typically occurred in Hong Kong Territory. For purpose of selecting an appropriate rainfall pattern in engineering applications, factors affecting the occurrence of different rainfall patterns are examined by statistical contingency tables analysis through which the inter-dependence of the occurrence frequency of rainfall patterns with respect to geographical location, rainfall duration and depth, and seasonality is investigated. Furthermore, due to inherent variability of rainfall mass curves or hyetographs within each classified rainfall pattern, a practical procedure to probabilistically generate plausible rainfall patterns is described. The procedure preserves the inherent stochastic features of random dimensionless rainfall hyetograph ordinates, which in general are correlated non-normal multivariate compositional variables.  相似文献   

8.
Bacterial concentration (Escherichia coli) is used as the key indicator for marine beach water quality in Hong Kong. For beaches receiving streamflow from unsewered catchments, water quality is mainly affected by local nonpoint source pollution and is highly dependent on the bacterial load contributed from the catchment. As most of these catchments are ungauged, the bacterial load is generally unknown. In this study, streamflow and the associated bacterial load contributed from an unsewered catchment to a marine beach, Big Wave Bay, are simulated using a modelling approach. The physically based distributed hydrological model, MIKE‐SHE, and the empirical watershed water quality model (Hydrological Simulation Program – Fortran) are used to simulate streamflow and daily‐averaged E. coli concentration/load, respectively. The total daily derived loads predicted by the model during calibration (June–July 2007) and validation (July–October 2008) periods agree well with empirical validation data, with a percentage difference of 3 and 2%, respectively. The simulation results show a nonlinear relationship between E. coli load and rainfall/streamflow and reveal a source limiting nature of nonpoint source pollution. The derived load is further used as an independent variable in a multiple linear regression (MLR) model to predict daily beach water quality. When compared with the MLR models based solely on hydrometeorological input variables (e.g. rainfall and salinity), the new model based on bacterial load predicts much more realistic E. coli concentrations during rainstorms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A design hyetograph which represents the time distribution of design rainfall depth corresponding to a duration and a return period is essential in hydrologic design. However, for locations without observed data (ungauged sites), construction of design hyetographs is a difficult task because of the lack of data. Hence, an approach based on self‐organizing map (SOM) is proposed in this paper to construct design hyetographs at ungauged sites. SOM, which is a special kind of artificial neural networks (ANNs), is a powerful technique for extracting and visualizing salient features of data and for solving classification problems. The proposed approach is composed of three steps: classification, assignment and construction. First, the SOM‐based classification is performed to analyse gauged sites' design hyetographs. Second, based on the concept of indicator kriging, a method is developed to assign an ungauged site of interest to a certain cluster. Third, based on the spatial information, the clustering results, and the design hyetographs of gauged sites, the design hyetograph at the site of interest is constructed using the reciprocal‐distance‐squared method. An application is conducted to assess the advantages of the proposed approach over the conventional approaches. Moreover, cross‐validation tests are applied to evaluate the performance of the accuracy and the robustness of the proposed approach. The results confirm the improvement in performance by using the proposed approach instead of conventional approaches. The proposed approach is useful for constructing design hyetographs at ungauged sites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The primary objective of the study is to propose a strategy for rainfall–runoff model calibration at ungauged sites. This strategy comprises two main components: (1) development of the regional analysis method to synthesize the flow duration curves at ungauged sites; and (2) utilization of the synthetic flow duration curves for model calibration. Since the regional analysis method can synthesize the flow duration curves at ungauged sites, the continuous rainfall–runoff model coupled with a global optimization method were applied in southern Taiwan using the synthetic flow duration curve as an objective for model calibration. The results reveal that the regional flow duration curve and the strategy for model calibration at ungauged sites have good performances in the study area. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Optimal designs of stormwater systems rely very much on the rainfall Intensity–Duration–Frequency (IDF) curves. As climate has shown significant changes in rainfall characteristics in many regions, the adequacy of the existing IDF curves is called for particularly when the rainfall are much more intense. For data sparse sites/regions, developing IDF curves for the future climate is even challenging. The current practice for such regions is, for example, to ‘borrow’ or ‘interpolate’ data from regions of climatologically similar characteristics. A novel (3‐step) Downscaling‐Comparison‐Derivation (DCD) approach was presented in the earlier study to derive IDF curves for present climate using the extracted Dynamically Downscaled data an ungauged site, Darmaga Station in Java Island, Indonesia and the approach works extremely well. In this study, a well validated (3‐step) DCD approach was applied to develop present‐day IDF curves at stations with short or no rainfall record. This paper presents a new approach in which data are extracted from a high spatial resolution Regional Climate Model (RCM; 30 × 30 km over the study domain) driven by Reanalysis data. A site in Java, Indonesia, is selected to demonstrate the application of this approach. Extremes from projected rainfall (6‐hourly results; ERA40 Reanalysis) are first used to derive IDF curves for three sites (meteorological stations) where IDF curves exist; biases observed resulting from these sites are captured and serve as very useful information in the derivation of present‐day IDF curves for sites with short or no rainfall record. The final product of the present‐day climate‐derived IDF curves fall within a specific range, +38% to +45%. This range allows designers to decide on a value within the lower and upper bounds, normally subjected to engineering, economic, social and environmental concerns. Deriving future IDF curves for Stations with existing IDF curves and ungauged sites with simulation data from RCM driven by global climate model (GCM ECHAM5) (6‐hourly results; A2 emission scenario) have also been presented. The proposed approach can be extended to other emission scenarios so that a bandwidth of uncertainties can be assessed to create appropriate and effective adaptation strategies/measures to address climate change and its impacts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents the results of a review of earthquake data and a study of seismic hazard for Hong Kong. A region of about 660 km × 660 km around Hong Kong was selected for the study. In this study, the earthquake information available for the region was reviewed, and where possible, earthquake magnitudes were calculated. Since there is no strong motion record for any earthquake within the region, Joyner and Boore's attenuation law1 has been used for the analysis. The results show that the seismic hazard in Hong Kong is relatively small, but because of the uncertainty inherent in the assumed attenuation relationship, accurate prediction of peak ground acceleration is not possible.  相似文献   

13.
The paper describes a parsimonious approach for generating continuous daily stream‐flow time‐series from observed daily rainfall data in a catchment. The key characteristic in the method is a duration curve. It is used to convert the daily rainfall information from source rain gauges into a continuous daily hydrograph at the destination river site. For each source rain gauge a time‐series of rainfall related ‘current precipitation index’ is generated and its duration curve is established. The current precipitation index reflects the current catchment wetness and is defined as a continuous function of precipitation, which accumulates on rainy days and exponentially decays during the periods of no rainfall. The process of rainfall‐to‐runoff conversion is based on the assumption that daily current precipitation index values at rainfall site(s) in a catchment and the destination site's daily flows correspond to similar probabilities on their respective duration curves. The method is tested in several small catchments in South Africa. The method is designed primarily for application at ungauged sites in data‐poor regions where the use of more complex and information consuming techniques of data generation may not be justified. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Multiple Discriminant Analysis of Marine Sediment Data   总被引:2,自引:0,他引:2  
A multivariate statistical approach was used in the analysis of inter-relationships among marine benthic infaunal structure, physical and chemical characteristics of sediment samples and toxicity data derived from laboratory tests at 16 locations in shallow, inshore waters of Hong Kong. The method involved classification (cluster analysis using the Bray–Curtis similarity index) and ordination (multi-dimensional scaling) of infaunal patterns and the use of multiple discriminant analysis to relate groupings of the locations to the selected environmental and toxicity data. Analysis of the combined sediment physical, biological, chemical and toxicity dataset by stepwise multiple discriminant analysis allowed identification of those variables most sensitive for discriminating location groups. The use of multiple discriminant analysis in sediment quality characterization was evaluated against the Sediment Quality Triad approach and other statistical techniques.  相似文献   

15.
Reliable estimation of low flows at ungauged catchments is one of the major challenges in water‐resources planning and management. This study aims at providing at‐site and ungauged sites low‐flow frequency analysis using regionalization approach. A two‐stage delineating homogeneous region is proposed in this study. Clustering sites with similar low‐flow L‐moment ratios is initially conducted, and L‐moment‐based discordancy and heterogeneity measures are then used to detect unusual sites. Based on the goodness‐of‐fit test statistic, the best‐fit regional model is identified in each hydrologically homogeneous region. The relationship between mean annual 7‐day minimum flow and hydro‐geomorphic characteristics is also constructed in each homogeneous region associated with the derived regional model for estimating various low‐flow quantiles at ungauged sites. Uncertainty analysis of model parameters and low‐flow estimations is carried out using the Bayesian inference. Applied in Sefidroud basin located in northwestern Iran, two hydrologically homogeneous regions are identified, i.e. the east and west regions. The best‐fit regional model for the east and west regions are generalized logistic and Pearson type III distributions, respectively. The results show that the proposed approach provides reasonably good accuracy for at‐site as well as ungauged‐site frequency analysis. Besides, interval estimations for model parameters and low flows provide uncertainty information, and the results indicate that Bayesian confidence intervals are significantly reduced when comparing with the outcomes of conventional t‐distribution method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The primary purpose of this study is to develop regional models of the lower part of flow duration curves (LPFDCs) to synthesize low‐flow characteristics at ungauged sites in southern Taiwan. Because of the close relationship between low streamflow regimes and hydrogeological features, the model development first involved delimiting homogeneous hydrogeological regions by using two‐step cluster analysis. Each homogeneous region was then discriminated by an equation developed on the basis of its hydrogeological features, which was then used to determine which of three sets of regional LPFDC models would be appropriate for a particular ungauged site. Each of the three sets of regional LPFDC models were developed using both conventional multivariate statistical regression and fuzzy regression. Thirty‐four stream‐gauged watersheds located in southern Taiwan provide the data set. The study results reveal that the regional LPFDC models developed in this study could be applied reasonably at ungauged sites. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Increasing precipitation extremes are one of the possible consequences of a warmer climate. These may exceed the capacity of urban drainage systems, and thus impact the urban environment. Because short‐duration precipitation events are primarily responsible for flooding in urban systems, it is important to assess the response of extreme precipitation at hourly (or sub‐hourly) scales to a warming climate. This study aims to evaluate the projected changes in extreme rainfall events across the region of Sicily (Italy) and, for two urban areas, to assess possible changes in Depth‐Duration‐Frequency (DDF) curves. We used Regional Climate Model outputs from Coordinated Regional Climate Downscaling Experiment for Europe area ensemble simulations at a ~12 km spatial resolution, for the current period and 2 future horizons under the Representative Concentration Pathways 8.5 scenario. Extreme events at the daily scale were first investigated by comparing the quantiles estimated from rain gauge observations and Regional Climate Model outputs. Second, we implemented a temporal downscaling approach to estimate rainfall for sub‐daily durations from the modelled daily precipitation, and, lastly, we analysed future projections at daily and sub‐daily scales. A frequency distribution was fitted to annual maxima time series for the sub‐daily durations to derive the DDF curves for 2 future time horizons and the 2 urban areas. The overall results showed a raising of the growth curves for the future horizons, indicating an increase in the intensity of extreme precipitation, especially for the shortest durations. The DDF curves highlight a general increase of extreme quantiles for the 2 urban areas, thus underlining the risk of failure of the existing urban drainage systems under more severe events.  相似文献   

18.
Abstract

The physically-based flood frequency models use readily available rainfall data and catchment characteristics to derive the flood frequency distribution. In the present study, a new physically-based flood frequency distribution has been developed. This model uses bivariate exponential distribution for rainfall intensity and duration, and the Soil Conservation Service-Curve Number (SCS-CN) method for deriving the probability density function (pdf) of effective rainfall. The effective rainfall-runoff model is based on kinematic-wave theory. The results of application of this derived model to three Indian basins indicate that the model is a useful alternative for estimating flood flow quantiles at ungauged sites.  相似文献   

19.
ABSTRACT

Estimating river flows at ungauged sites is generally recognised as an important area of research. In countries or regions with rapid land development and sparse hydrological gauging networks, three particular challenges may arise—data scarcity, data quality, and hydrological non-stationarity. Using data from 44 gauged sub-catchments of the upper Ping catchment in northern Thailand from the period 1995–2006, three relevant flow response indices (runoff coefficient, base flow index and seasonal elasticity of flow) were regionalised by regression against available catchment properties. The runoff coefficient was the most successfully regionalised, followed by base flow index and lastly the seasonal elasticity. The non-stationarity (represented by the differences between two 6-year sub-periods) was significant both in the flow response indices and in land use indices; however relationships between the two sets of indices were weak. The regression equations derived from regionalisation were not helpful in predicting the non-stationarity in the flow indices except somewhat for the runoff coefficient. A partly subjective data quality scoring system was devised, and showed the clear influence of rainfall and flow data quality on regionalisation uncertainty. Recommendations towards improving data support for hydrological regionalisation in Thailand include more relevant soils databases, improved records of abstractions and investment in the gauge network. Widening of the regionalisation beyond the upper Ping and renewed efforts at using remotely sensed rainfall data are other possible ways forward.

EDITOR Z.W. Kundzewicz ASSOCIATE EDITOR T. Wagener  相似文献   

20.
Daily river inflow time series are highly valuable for water resources and water environment management of large lakes. However, the availability of continuous inflow data for large lakes is still relatively limited, especially for large lakes situated within humid plain regions with tens or even hundreds of tributaries. In this study, we choose the fifth largest freshwater Lake Chaohu in China as our study area to introduce a new approach to reconstruct historical daily inflows at ungauged subcatchments of large lakes. This approach makes use of water level, lake surface rainfall, evaporation from the lake, and catchment rainfall observations. Rainfall–runoff relationship at a reference catchment was analysed to select rainfall input and estimate run‐off coefficient firstly, and the run‐off coefficient was then transferred to ungauged subcatchments to initially estimate daily inflows. Run‐off coefficient was scaled to adjust daily inflows at ungauged subcatchments according to water balance of the lake. This approach was evaluated using sparsely measured inflows at eight subcatchments of Lake Chaohu and compared with the commonly used drainage area ratio method. Results suggest that the inflow time series reconstructed from this approach consistent well to corresponding observations, with mean R2 and Nash–Sutcliffe efficiency values of 0.69 and 0.6, respectively. This approach outperforms drainage area ratio method in terms of mean R2 and Nash–Sutcliffe efficiency values. Accuracy of this approach holds well when the number of water‐level station being used decreased from four to one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号