首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An innovative and nondestructive method to measure the hydraulic conductivity of drill core samples in horizontal and vertical directions within a triaxial cell has been developed. This has been applied to characterizing anisotropy and heterogeneity of a confined consolidated limestone aquifer. Most of the cores tested were isotropic, but hydraulic conductivity varied considerably and the core samples with lowest values were also the most anisotropic. Hydraulic conductivity decreased with increasing effective stress due to closure of microfractures caused by sampling for all core samples. This demonstrates the importance of replicating in situ effective stresses when measuring hydraulic conductivity of cores of deep aquifers in the laboratory.  相似文献   

2.
水压致裂技术现已发展成为确定地下洞室三维原地应力状态、高压洞室围岩的自身承载能力以及岩体高压透水性的可靠实用方法,并已经在核废料处置、长大深埋交通隧道以及水电站高压力洞室工程中得到广泛应用。实践表明,综合测定岩体的物理力学参数,充分利用围岩承载力优化工程设计,对确保工程安全和提高设计水平具有重要意义。  相似文献   

3.
We designed and evaluated a “tube seepage meter” for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy‐bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self‐purging groundwater‐sampling device.  相似文献   

4.
In glacial outwash deposits, the movement of ground water Is determined by small scale irregularities in the pattern of hydraulic conductivity. Permeability determinations on split spoon samples obtained from coring the site are not sufficient to predict the patchiness of flow since it cannot define continuity of the strata. The lattice work pattern can be determined by vertical profiling with direct ground water flow measurement. The rate and direction of flow is combined with head gradient changes to compute hydraulic conductivity changes across the site.
The results of the tests can be plotted on triangular graphs depicting the fundamental Darcy equation. The local conditions reflect a mathematical "patchiness" of hydraulic conductivity unique to outwash deposits.
The procedure was employed to determine flow characteristics and define the zone of contribution to porous bottom kettle lakes. The zone of contribution was defined by projecting backward from the vertical profiling and shallow measurements and taking into account the daily rain water recharge rate across the site.
For the unconfined aquifer north of the pond, shallow ground water flow measurements were necessary to define the recharge portion of the shoreline. Vertical profiling was required to define the recharge volume since the rate of flow was not even with depth. A simple differential equation for determining the recharge area is presented along with the calculations.  相似文献   

5.
The hydrofracturing technique has developed into a reliable and practical method for determining the original three-dimensional crustal stress state of underground caverns,the load-bearing capacity of a high pressure cavern itself,and the high pressure hydraulic permeability of rock masses,and has also been extensively used in disposal of nuclear waste,long and deeply-buried traffic channels and high-pressure cavern engineering for hydraulic power plants.The practice shows that the comprehensive measurement of the physical parameters of the rock mass and taking full use of the wall rock load-bearing capacity to optimize the engineering design hold are very useful in ensuring the engineering safety and improving the design level.  相似文献   

6.
Electro-osmosis (EO), the movement of water through porous media in response to an electric field, offers a means for extracting contaminated ground water from fine-grained sediments, such as clays, that are not easily amenable to conventional pump-and-treat approaches. The EO-induced water flux is proportional to the voltage gradient in a manner analogous to the flux dependence on the hydraulic gradient under Darcy's law. The proportionality constant, the soil electro-osmotic conductivity or keo, is most easily measured in soil cores using bench-top tests, where flow is one-dimensional and interfering effects attributable to Darcy's law can be directly accounted for. In contrast, quantification of EO fluxes and keo in the field under deployment conditions can be difficult because electrodes are placed in ground water wells that may be screened across a heterogeneous mixture of lithologies. As a result, EO-induced water fluxes constitute an approximate radial flow system that is superimposed upon a Darcy flow regime through permeable pathways that may or may not be coupled with hydraulic head differences created by the EO-induced water fluxes. A single well comparative tracer test, which indirectly measures EO fluxes by comparing wellbore tracer dilution rates between background and EO-induced water fluxes, may provide a means for routinely quantifying the efficacy of EO systems in such settings. EO fluxes measured in field tests through this technique at a ground water contamination site were used to estimate a mean keo value through a semianalytic line source model of the electric field. The resulting estimate agrees well with values reported in the literature and with values obtained with bench-top tests conducted on a soil core collected in the test area.  相似文献   

7.
Measurement of surface water runoff from plots of two different sizes   总被引:1,自引:0,他引:1  
Intensities and amounts of water infiltration and runoff on sloping land are governed by the rainfall pattern and soil hydraulic conductivity, as well as by the microtopography and soil surface conditions. These components are closely interrelated and occur simultaneously, and their particular contribution may change during a rainfall event, or their effects may vary at different field scales. The scale effect on the process of infiltration/runoff was studied under natural field and rainfall conditions for two plot sizes: small plots of 0·25 m2 and large plots of 50 m2. The measurements were carried out in the central region of Chile in a piedmont most recently used as natural pastureland. Three blocks, each having one large plot and five small plots, were established. Cumulative rainfall and runoff quantities were sampled every 5 min. Significant variations in runoff responses to rainfall rates were found for the two plot sizes. On average, large plots yielded only 40% of runoff quantities produced on small plots per unit area. This difference between plot sizes was observed even during periods of continuous runoff. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Few methods exist for measuring rapidly changing fluid contents at the pore scale that simultaneously allow whole flow field visualization. We present a method for using real-time neutron radiography to measure rapidly changing moisture profiles in porous media. The imaging technique monitors the attenuation of a thermal neutron beam as it traverses a flow field and provides measurements every 30 ms with an image area >410 cm2 and a spatial resolution 0.05 cm. The technique is illustrated by measuring the variation in moisture content across a wetting front moving at constant velocity through SiO2 sand. The relative contributions of the hydraulic conductivity and diffusivity terms in Richards' equation to the total fluid flux within the wetting front region were also measured. The diffusivity was found to rise from zero to a peak value within the wetting front region before falling off while the conductivity was found to rise monotonically. The reliability of the technique was checked via mass balance.  相似文献   

9.
The saturated and unsaturated flow properties of a field soil under two tillage treatments were obtained with ponded rings and disc permeameters of dissimilar radii. No difference was observed between tillage treatments but the flow properties displayed a distinct macropore-matrix dichotomy, with K changing by an order of magnitude as ψ0 went from just - 30 mm to zero. Accurate prediction of time to incipient ponding was achieved using both numerical and analytical models calibrated with field hydraulic properties that were characteristic of the soil matrix. However, extension of the numerical model to the prediction of the wetting front development under non-ponded conditions was less accurate due to localized preferred wetting It is hypothesized that at this site, localized concentration of rainfall and hence, preferred wetting, May, occur by interception and stemflow associated with lines of standing stubble present in the original seeding slots.  相似文献   

10.
长白山地区现今地应力测量结果与应力状态分析   总被引:2,自引:1,他引:1       下载免费PDF全文
本文通过在长白山地区不同地点进行原地测量获得了现今地应力实测值的大小和方向.为了研究长白山地区现今地应力状态,结合长白山火山监测工程的需要,我们在长白山地区进行了现场地应力测量,首次取得了该区的地应力实测数据.测量方法采用水压致裂法,测点分别布置在安图县永庆乡东清村和松江镇冰湖屯村,抚松县仙人桥镇大青川村等三个不同的构造部位,测量深度为40~95m.测量结果表明:本区现今最大水平主应力方向在天池北部以NW—NNW向为主,而在天池西部则为近EW向为主;最大水平主应力值一般为2.31~12.39 MPa,最小水平主应力值一般为1.39~7.02 MPa.与其他地区相比较,本区属中等偏高应力区.本文对研究区现今应力状态进行了初步分析,本区现今地应力状态主要受区域构造影响,同时受天池岩浆活动和地热田的影响,具有复杂性.  相似文献   

11.
The hydraulic properties of the topsoil control the partition of rainfall into infiltration and runoff at the soil surface. They must be characterized for distributed hydrological modelling. This study presents the results of a field campaign documenting topsoil hydraulic properties in a small French suburban catchment (7 km2) located near Lyon, France. Two types of infiltration tests were performed: single ring infiltration tests under positive head and tension‐disk infiltration using a mini‐disk. Both categories were processed using the BEST—Beerkan Estimation of Soil Transfer parameters—method to derive parameters describing the retention and hydraulic conductivity curves. Dry bulk density and particle size data were also sampled. Almost all the topsoils were found to belong to the sandy loam soil class. No significant differences in hydraulic properties were found in terms of pedologic units, but the results showed a high impact of land use on these properties. The lowest dry bulk density values were obtained in forested soils with the highest organic matter content. Permanent pasture soils showed intermediate values, whereas the highest values were encountered in cultivated lands. For saturated hydraulic conductivity, the highest values were found in broad‐leaved forests and small woods. The complementary use of tension‐disk and positive head infiltration tests highlighted a sharp increase of hydraulic conductivity between near saturation and saturated conditions, attributed to macroporosity effect. The ratio of median saturated hydraulic conductivity to median hydraulic conductivity at a pressure of − 20 mm of water was about 50. The study suggests that soil texture, such as used in most pedo‐transfer functions, might not be sufficient to properly map the variability of soil hydraulic properties. Land use information should be considered in the parameterizations of topsoil within hydrological models to better represent in situ conditions, as illustrated in the paper. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Characterization of the hydraulic properties of fractures in chalk   总被引:3,自引:0,他引:3  
Nativ R  Adar E  Assaf L  Nygaard E 《Ground water》2003,41(4):532-543
  相似文献   

13.
The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain–digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.  相似文献   

14.
Over 400 unlithified sediment samples were collected from four different depositional environments in global locations and the grain‐size distribution, porosity, and hydraulic conductivity were measured using standard methods. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations (e.g., Hazen, Carman‐Kozeny) commonly used to estimate hydraulic conductivity from grain‐size distribution. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values with errors ranging to over 500%. To improve the empirical estimation methodology, the samples were grouped by depositional environment and subdivided into subgroups based on lithology and mud percentage. The empirical methods were then analyzed to assess which methods best estimated the measured values. Modifications of the empirical equations, including changes to special coefficients and addition of offsets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, offshore marine, and river sediments. Estimated hydraulic conductivity errors were reduced to 6 to 7.1 m/day for the beach subgroups, 3.4 to 7.1 m/day for dune subgroups, and 2.2 to 11 m/day for offshore sediments subgroups. Improvements were made for river environments, but still produced high errors between 13 and 23 m/day.  相似文献   

15.
Jamal Asfahani 《水文研究》2007,21(21):2934-2943
Twenty‐nine Schlumberger electrical soundings were carried out in the Salamiyeh region in Syria using a maximum current electrode separation of 1 km. Three soundings were made at existing boreholes for comparison. Aquifer parameters of hydraulic conductivity and transmissivity were obtained by analysing pumping test data from the existing boreholes. An empirical relationship between hydraulic conductivity determined from the pumping test and both resistivity and thickness of the Neogene aquifer has been established for these boreholes in order to calculate the geophysical hydraulic conductivity. A close agreement has been obtained between the computed hydraulic conductivity and that determined from the pumping test. The relationship established has, therefore, been generalized in the study area in order to evaluate hydraulic conductivity and transmissivity at all the points where geoelectrical measurements have been carried out. This generalization allows one to derive maps of the hydraulic conductivity and transmissivity in the study area based on geoelectrical measurements. These maps are important in future modelling processes oriented towards better exploitation of the aquifers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Methods to assess the physical habitat provide important tools for many aspects of river management. Hydraulic units (defined as a homogeneous patch of flow type and substrate) were described in mountain streams of Central Argentina and the distribution of macrozoobenthos in these habitat units was analyzed. Four streams from the upper Carcarañá River Basin (Córdoba, Argentina) were sampled in two hydrological periods. Hydraulic units (as substrate and flow type), current velocity, depth, macrophytes and macroalgae were assessed. Three benthic samples were taken in each hydraulic unit. A total of 12 hydraulic units were registered, which varied seasonally in their proportional abundance. The highest values of taxonomic richness, total abundance, diversity and evenness were found in the low-water period. The most heterogeneous hydraulic units (characterized by substrate of diverse grain size) presented the highest richness, diversity and evenness, whereas the highest total abundance was observed in hydraulic units with homogeneous substrate, such as bedrock or gravel sand. Canonical correspondence analysis grouped samples and taxa mainly in relation to the hydraulic units, and temporal variation in macroinvertebrate assemblages was observed. We found that the interaction between hydrological and geomorphological conditions affected benthic assemblages and that their organization is important at a mesoscale. Therefore, hydraulic units may be considered important tools in assessing stream integrity in lotic systems of central Argentina.  相似文献   

17.
Illman WA  Berg SJ  Yeh TC 《Ground water》2012,50(3):421-431
The main purpose of this paper was to compare three approaches for predicting solute transport. The approaches include: (1) an effective parameter/macrodispersion approach (Gelhar and Axness 1983); (2) a heterogeneous approach using ordinary kriging based on core samples; and (3) a heterogeneous approach based on hydraulic tomography. We conducted our comparison in a heterogeneous sandbox aquifer. The aquifer was first characterized by taking 48 core samples to obtain local-scale hydraulic conductivity (K). The spatial statistics of these K values were then used to calculate the effective parameters. These K values and their statistics were also used for kriging to obtain a heterogeneous K field. In parallel, we performed a hydraulic tomography survey using hydraulic tests conducted in a dipole fashion with the drawdown data analyzed using the sequential successive linear estimator code (Yeh and Liu 2000) to obtain a K distribution (or K tomogram). The effective parameters and the heterogeneous K fields from kriging and hydraulic tomography were used in forward simulations of a dipole conservative tracer test. The simulated and observed breakthrough curves and their temporal moments were compared. Results show an improvement in predictions of drawdown behavior and tracer transport when the K tomogram from hydraulic tomography was used. This suggests that the high-resolution prediction of solute transport is possible without collecting a large number of small-scale samples to estimate flow and transport properties that are costly to obtain at the field scale.  相似文献   

18.
Biochar has the potential to be a soil amendment in green roofs owing to its water retention, nutrient supply, and carbon sequestration application. The combined effects of biochar and vegetated soil on hydraulic performance (e.g., saturated hydraulic conductivity, retention and detention, and runoff delay) are the crucial factor for the application of the novel biochar in green roofs. Recent studies investigated soil water potential (i.e., suction) either on vegetated soil or on biochar-amended soil but rarely focused on their integrated application. With the purpose of investigating the hydraulic performance of green roofs in the application of biochar, the combined effect of biochar and vegetated soil on hydrological processes was explored. Artificial rainfall experiments were conducted on the four types of experimental soil columns, including natural soil, biochar-amended soil, vegetated natural soil, and vegetated biochar-amended soil. The surface ponding, bottom drainage and the volumetric water content were measured during the rainfall test. Simulation method by using HYDRUS-1D was adopted for estimating hydraulic parameters and developing modelling analysis. The results indicated that the saturated hydraulic conductivity of vegetated soil columns were higher than bare soil columns. The addition of biochar decreased the saturated hydraulic conductivity, and the magnitude of decrease was much significant in the case of vegetated soil. The influence of vegetation on permeability is more prominent than biochar. The vegetated biochar-amended soil has the highest retention and detention capacity, and shows a preferable runoff delay effect under heavy rain among the four soil columns. The results from the present study help to understand the hydrological processes in the green roof in the application of biochar, and imply that biochar can be an alternative soil amendment to improve the hydraulic performance.  相似文献   

19.
Abstract

The theoretical spatial distribution of hydraulic head during infiltration is used to interpret the results of infiltration experiments made in the field on a single, isolated, column of herbaceous peat in a flood-plain wetland in central England. Crusts of different hydraulic resistance were applied to the column surface. These regulated the water influx enabling the hydraulic conductivity of the peat to be estimated at between 1 and 19.5 m day-1. It is inferred that, when the hydraulic gradient changes, water may follow different pathways through the peat. Water moves rapidly through macropores in proportion to the applied hydraulic gradient, and infiltrates the peat matrix from the macropore walls. The results indicate the significance of hydraulic conductivity variations with depth, and the importance of precipitation intensity.  相似文献   

20.
The association between hydrocarbon‐rich reservoirs and organic‐rich source rocks means unconventional oil and gas plays usually occur in mature sedimentary basins—where large‐scale conventional development has already taken place. Abandoned wells in proximity to hydraulic fracturing could be affected by increased fluid pressures and corresponding newly generated fractures that directly connect (frac hit) to an abandoned well or to existing fractures intersecting an abandoned well. If contaminants migrate to a pathway hydraulically connected to an abandoned well, upward leakage may occur. Potential effects of hydraulic fracturing on upward flow through a particular type of leaky abandoned well—abandoned oil and gas wells converted into water wells were investigated using numerical modeling. Several factors that affect flow to leaky wells were considered including proximity of a leaky well to hydraulic fracturing, flowback, production, and leaky well abandonment methods. The numerical model used historical records and available industry data for the Eagle Ford Shale play in south Texas. Numerical simulations indicate that upward contaminant migration could occur through leaky converted wells if certain spatial and hydraulic conditions exist. Upward flow through leaky converted wells increased with proximity to hydraulic fracturing, but decreased when flowback and production occurred. Volumetric flow rates ranged between 0 and 0.086 m3/d for hydraulic‐fracturing scenarios. Potential groundwater impacts should be paired with plausible transport mechanisms, and upward flow through leaky abandoned wells could be unrelated to hydraulic fracturing. The results also underscore the need to evaluate historical activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号