首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Discussion on geobiology, biogeology and geobiofacies   总被引:3,自引:0,他引:3  
Here we first discuss the definition of and the difference between geobiology and biogeology following a brief introduction of recent geobiology research in China. Geobiology is defined as an interdisciplinary study of life sciences and earth sciences, and biogeology as an interdisciplinary study of biology and geology. Scope of the term geobiology covers that of the term biogeology. Branch interdisciplines of both are listed. We then propose the term geobiofacies, defined as the facies of a geologic body embodying the whole process of interaction between organisms and environments. Differences among geobiofacies, biofacies, and organic facies are discussed. Main parameters defining a geobiofacies include habitat type, biotic composition and productivity, paleo-oxygenation regimes, and early diagenesis phases. Each of them is discussed in detail, and a semi-quantitative assessment of the biogeofacies of source rocks is proposed based on these parameters. A two-fold terminology for geobiofacies is recommended, namely, the biological and environmental aspects of biota and the redox conditions during life-burial-diagenesis process  相似文献   

2.
Geomicrobiology is a sub-discipline of geobiology and emphasizes the interaction between microorganisms and their environment on Earth. There is a need to explicitly emphasize the biogeochemical processes performed by microorganisms associated with Earth’s tectonic activities, especially under the framework of the modern theory of plate tectonics. Tectonomicrobiology aims to create a better synergy between microbial and active tectonic processes. This explicit synergy should also foster better communications between solid Earth scientists and life scientists in terms of holistic Earth system dynamics at both tectonic and micro-scales.  相似文献   

3.
Global warming, the most severe faunal mass extinction and the shift of biogeochemical cycles were observed in the ocean across the Permian-Triassic boundary about 252 million years ago, providing an analog to understanding the modern oceans. Along with the progressive global warming, the biogeochemical cycle was documented to show a shift from the decoupled processes of carbon, nitrogen and sulfur prior to the mass extinction to the coupled biogeochemical processes during faunal mass extinction. The coupled biogeochemical cycle was further observed to shift from the coupled C-N processes during the first episode of the faunal mass extinction to the coupled C-N-S processes during the second episode, diagnostic of the progressive development of more deteriorated marine environmental conditions and the more severe biotic crisis across the Permian-Triassic boundary. The biogeochemical cycles could thus be an indication to the progressive collapse of marine ecosystems triggered by the global warming in Earth history. In modern oceans, the coupled C-N cycle triggered by the global warming was observed in some regions. If these local C-N processes develop and expand to the global oceans, the coupled C-N-S processes might be brought into existence and the marine ecosystems are inevitable to suffer from complete collapse as observed at 252 million years ago.  相似文献   

4.
The discipline of “Bio-Organic Geochemistry” is a cross research field between biogeochemistry and traditional organic geochemistry, which focuses on geochemical processes related to the biosynthesis of organic molecules (particularly lipids) by (micro) organisms, organic matter production by primary producers, degradation of organic matter by microbial processes recorded by retainable lipid biomarkers, and organic proxies for studies of paleo-climate, paleo-environments, paleoecology and Earth evolution. This field aims to go beyond the traditional petroleum-oriented Organic Geochemistry by integrating with biogeochemical concepts concerned mostly with biomolecules from cellular material such as DNA and lipids. A formal Chinese organization in Bio-Organic Geochemistry was established in 2012 when the first conference was held in Guangzhou. This organization has witnessed rapid growth over the past six years with focused research addressing organic proxies in paleoclimate and paleoenvironmental applications, with particular rapid development in glycerol dialkyl glycerol tetraethers-derived proxies. Most progresses in China so far are made following or paralleling the international trend in biogeochemical studies. Things have begun to change with China’s ambitious initiatives in several bio-geo programs such as the Ocean Deep Drilling Program of China, the Microbial Hydrosphere Program, the Deep Carbon Observatory, and the Microbiome Program. Looking forward in the 21st Century, the growing Chinese research community in Bio-Organic Geochemistry faces grand opportunities and challenges as Chinese scientists propel themselves toward global research frontiers.  相似文献   

5.
Microbes not only show sensitive responses to environmental changes but also play important roles in geochemical and geophysical systems. It is well known that microbes have caused major changes in surface environments and biogeochemical cycles through Earth history. Microbial processes can also induce the synthesis of certain minerals under Earth-surface conditions that previously were believed to form only under high temperatures and pressures in the deep Earth. For example, microbes can promote the conversion of smectite to illite, synthesis of authigenic plagioclase, precipitation of dolomite, and biotransformation of geolipids. These effects of microbes are due to their large surface/volume ratios, enzyme production, and abundant functional groups. Microbial catalyzation of chemical reactions proceeds through reaction-specific enzymes, a decrease in Gibbs’s free energy, and/or break through the dynamics reaction thresholds via their metabolisms and physiology. Microbes can lower the surface free energy of mineral nuclei via biophysical adsorption due to their large surface/volume ratios and abundant functional groups. The mineral precipitation and transformation processes induced by microbes are functionally equivalent to geological processes operating at high temperatures and pressures in the deep Earth, suggesting that microbial processes can serve as analogs to deep abiotic processes that are difficult to observe.  相似文献   

6.
Archaeal and bacterial glycerol dialkyl glycerol tetraethers (GDGTs) play a unique role in discerning the biogeochemical processes and climate change in terrestrial (e.g. soil, peat, stalagmites, lakes, rivers, hot springs) and marine environments. Organic proxies based on GDGTs (e.g. TEX86, MBT/CBT and BIT) have made impressive applications in the open ocean and terrestrial environments. However, the applicability of these proxies in marginal seas has not been thoroughly evaluated, which is necessary given the complexity and dynamics of these systems, such as organic matter (OM) flux, hydrodynamic conditions, and human impact. This review aims to summarize recent studies of GDGTs and GDGT-based proxies in the Chinese marginal seas (CMS), which are characterized by diverse gradient in terrigenous supplies and ocean productivity and hold rich information on climate and sea level changes, ocean current dynamics, sedimentary evolution and biogeochemical processes.  相似文献   

7.
Fungi are a highly complex group of organisms of the kingdom Eumycota (i.e. the true-fungi) and other fungus-like organisms traditionally studied by mycologists, such as slime molds (Myxomycota) and oomycota (Straminopiles or Heterokonts). They constitute a significant proportion of the as yet undiscovered biota that is crucial in ecological processes and human well-being, through at least three main trophic modes: saprophytism, parasitism, or symbiosis. In addition to direct benefit (sources of antibiotics) or adverse effects (agents of disease), fungi can impact many environmental processes, particularly those associated with the decomposition of organic matter. They are present in almost all regions and climates, even under extreme conditions. However, studies have focussed mostly on economically interesting species, and knowledge of their diversity and functions is mainly restricted to soil, rhizosphere, mangrove, and lotic ecosystems. In this study, we review the diversity and potential functions of microscopic fungi in aquatic ecosystems, with focus on the pelagic environments where they often are regarded as allochthonous material, of low ecological significance for food-web processes. Recent environmental 18S rDNA surveys of microbial eukaryotes have (1) unveiled a large reservoir of unexpected fungal diversity in pelagic systems, (2) emphasized their ecological potentials for ecosystem functioning, and (3) opened new perspectives in the context of food-web dynamics. In spite of persisting methodological difficulties, we conclude that a better documentation of the diversity and quantitative and functional importance of fungi will improve our understanding of pelagic processes and biogeochemical cycling.  相似文献   

8.
日、月对地球表层海水的引潮力导致潮汐的周期性变化是一种成熟理论.地球除具有日、月、年潮汐规律外,还具有明显的准1800年、200年、50~70年、18.6年、9.3年和2.5~7年不同尺度的周期.本文通过将地球赤道半径和月球轨道半径投影到黄道面上,标定二者矢量半径之和的模的极值状态,创建了引潮力极大值和强潮汐的周期性指数KSEM.这对探讨和预测潮汐的时间分布和推断地球自转角速度变化规律提供了一种新途径.行星系统中木星和金星对地球的摄动影响最突出,但目前还没有一个行之有效的模型将日、地、月、木星、金星作为一个统一整体,对地球潮汐极值状态进行刻画.通过辨析这五大天体运动预设的位置关系的结构特征,进而考察KSEM指数与月球升交点和月球近地点会合周期的对应关系,以及对月球轨道运动不同的特征周期的叠加和定性分析,这对探讨强潮汐周期、厄尔尼诺现象和地震的时间分布规律提供了重要参考.  相似文献   

9.
Páramos, a neotropical alpine grassland-peatland biome of the northern Andes and Central America, play an essential role in regional and global cycles of water, carbon, and nutrients. They act as water towers, delivering water and ecosystem services from the high mountains down to the Pacific, Caribbean, and Amazon regions. Páramos are also widely recognized as a biodiversity and climate change hot spots, yet they are threatened by anthropogenic activities and environmental changes. Despite their importance for water security and carbon storage, and their vulnerability to human activities, only three decades ago, páramos were severely understudied. Increasing awareness of the need for hydrological evidence to guide sustainable management of páramos prompted action for generating data and for filling long-standing knowledge gaps. This has led to a remarkably successful increase in scientific knowledge, induced by a strong interaction between the scientific, policy, and (local) management communities. A combination of well-established and innovative approaches has been applied to data collection, processing, and analysis. In this review, we provide a short overview of the historical development of research and state of knowledge of the hydrometeorology, flux dynamics, anthropogenic impacts, and the influence of extreme events in páramos. We then present emerging technologies for hydrology and water resources research and management applied to páramos. We discuss how converging science and policy efforts have leveraged traditional and new observational techniques to generate an evidence base that can support the sustainable management of páramos. We conclude that this co-evolution of science and policy was able to successfully cover different spatial and temporal scales. Lastly, we outline future research directions to showcase how sustainable long-term data collection can foster the responsible conservation of páramos water towers.  相似文献   

10.
We discuss the concepts, research methods, and infrastructure of watershed science. A watershed is a basic unit and possesses all of the complexities of the land surface system, thereby making it the best unit for practicing Earth system science. Watershed science is an Earth system science practiced on a watershed scale, and it has developed rapidly over the previous two decades. The goal of watershed science is to understand and predict the behavior of complex watershed systems and support the sustainable development of watersheds. However, watershed science confronts the difficulties of understanding complex systems, achieving scale transformation, and simulating the co-evolution of the human-nature system. These difficulties are fundamentally methodological challenges. Therefore, we discuss the research methods of watershed science, which include the self-organized complex system method, the upscaling method dominated by statistical mechanics, Darwinian approaches based on selection and evolutionary principles, hydro-economic and eco-economic methods that emphasize the human-nature system co-evolution, and meta-synthesis for addressing unstructured problems. These approaches together can create a bridge between holism and reductionism and work as a group of operational methods to combine hard and soft integrations and capture all aspects of both natural and human systems. These methods will contribute to the maturation of watershed science and to a methodology that can be used throughout land-surface systems science.  相似文献   

11.
The increasing frequency and/or severity of extreme climate events are becoming increasingly apparent over multi‐decadal timescales at the global scale, albeit with relatively low scientific confidence. At the regional scale, scientific confidence in the future trends of extreme event likelihood is stronger, although the trends are spatially variable. Confidence in these extreme climate risks is muddied by the confounding effects of internal landscape system dynamics and external forcing factors such as changes in land use and river and coastal engineering. Geomorphology is a critical discipline in disentangling climate change impacts from other controlling factors, thereby contributing to debates over societal adaptation to extreme events. We review four main geomorphic contributions to flood and storm science. First, we show how palaeogeomorphological and current process studies can extend the historical flood record while also unraveling the complex interactions between internal geomorphic dynamics, human impacts and changes in climate regimes. A key outcome will be improved quantification of flood probabilities and the hazard dimension of flood risk. Second, we present evidence showing how antecedent geomorphological and climate parameters can alter the risk and magnitude of landscape change caused by extreme events. Third, we show that geomorphic processes can both mediate and increase the geomorphological impacts of extreme events, influencing societal risk. Fourthly, we show the potential of managing flood and storm risk through the geomorphic system, both near‐term (next 50 years) and longer‐term. We recommend that key methods of managing flooding and erosion will be more effective if risk assessments include palaeodata, if geomorphological science is used to underpin nature‐based management approaches, and if land‐use management addresses changes in geomorphic process regimes that extreme events can trigger. We argue that adopting geomorphologically‐grounded adaptation strategies will enable society to develop more resilient, less vulnerable socio‐geomorphological systems fit for an age of climate extremes. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

12.
Desert pavements are widespread landforms of arid environments. They consist of a monolayer of clasts at the surface, associated with an underlying unit of eolian fines. In some situations, buried desert pavements can be observed, which is interpreted as a change in the environmental conditions. Therefore, it is believed that desert pavements represent important paleoenvironmental sediment archives, especially for arid environments, where natural archives of past environments are rare. To better understand the formation process of desert pavements and to enable the paleoenvironmental interpretation of these valuable sediment archives, reliable chronologies are of crucial importance. Thus, OSL dating was applied to samples from well-developed desert pavements in two different study areas, the Cima Volcanic Field, eastern Mojave Desert, USA, and the desert of northeastern Badia, Jordan. To test the suitability of the sediments for OSL dating, the luminescence characteristics of the fine- and coarse-grain quartz fraction are described and compared. Finally, first OSL ages are presented.  相似文献   

13.
14.
Aquatic plants are essential for maintaining the diversity and stability of a lake ecosystem. Stable carbon isotopes (δ13C) of macrophytes have been widely used as a powerful tool to study ecological processes and paleoenvironmental evolution in lakes. Varying results are obtained when using the δ13C of macrophytes to study the changes in the lake environment at different spatio-temporal scales. Thus, sample preparation and subsequent laboratory analyses are crucial for studying environmental changes using the isotopic signal retained in the macrophytes, and are essential for the interpretation of isotope-environment relationships. This study analyzed the δ13C of different tissue components of macrophytes in three lakes of the lower Yangtze River basin, and a correlation analysis was performed on aquatic environments influencing the δ13C values in the different tissue components of macrophytes. The test results showed the difference between the δ13C values of the whole sample and cellulose. Relative analyses indicated that the major factors contributing to the δ13C variability in macrophytes were pH and the concentration of dissolved inorganic carbon (DIC). The δ13C of α-cellulose (δ13CAC) is more sensitive to environmental variables than that of the whole sample (δ13CW) and holocellulose (δ13CHC). The results of this study imply that extraction of α-cellulose is a prerequisite for research on the changes in lake environment using δ13C of macrophytes. This study aims to provide theoretical and data basis for further research on the environmental and ecological change using stable carbon isotopes of aquatic plants.  相似文献   

15.
Biogeomorphology is an umbrella term given to a highly‐active research area within geomorphology that focusses on the many and varied interactions and feedbacks between organisms and the physical Earth. In the last 25 years this interest has developed and diversified to include the direct and indirect influences of microorganisms, plants, animals and humans on earth surface processes and landform dynamics, and the roles of geomorphology in ecological functioning, resilience and evolution. This Commentary introduces a virtual special issue of 16 research papers and three ‘State of Science’ pieces, illustrating the diversity of the field, its continued theoretical and conceptual progression, and the applied relevance of biogeomorphological science in tackling environmental problems. Collectively, these papers demonstrate the merits of – and opportunities for – biogeomorphology as an inherently integrative science in understanding and managing the complexity of living landscapes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The Earth surface contains various oxic and anoxic environments. The later include natural wetlands,river and lake sediments, paddy field soils and landfills. In the last few decades, the biogeochemical cycle of carbon in anoxic environments, which leads to the production and emission of methane, a potent greenhouse gas in the atmosphere, has drawn great attentions from both scientific and public sectors. New organisms and mechanisms involved in methanogenesis and carbon cycling have been uncovered. Interspecies electron transfer is considered as a crucial step in methanogenesis in anoxic environments.Electron-carrying mediators, like H_2 and formate, are known to play the key role in electron transfer. Recently, it has been found that in addition to the conventional electron transfer via chemical mediators, direct interspecies electron transfer(DIET) can occur. In this Review, we describe the ecology and biogeochemistry of methanogenesis and highlight the effect of microbe-mineral interaction on microbial syntrophy. Recent advances in the study of DIET may pave the way towards a mechanistic understanding of methanogenesis and the influence of microbe-mineral interaction on this process.  相似文献   

17.
The importance of calcimicrobes and microbialite in carbonate platform and reefal environments has been stressed in recent literature. Burne and Moore[1] introduced the term microbialite to describe the clotted, laminated and undifferentiated fabrics formed by mi-crobial communities. Microbialites are organosedi-mentary deposits that have accreted as a result of ben-thic (prokaryotic or eukaryotic) communities, trapping and binding detrital sediment[1]. Microbial organisms and microbialite are…  相似文献   

18.
The RS‐tempQ Model ( r each– s cale t emporary flow biogeochemical model) is a conceptual model that can describe the hydrologic, sediment transport and biogeochemical processes of temporary rivers at the reach scale. The model takes into account the expansion–contraction of the inundated area of the river. It simulates the sediment transport and the nutrient fluxes that are transferred to the coastal area due to the first flash flood and during extreme rain events. The RS‐tempQ Model simulates the in‐stream processes during the wet and dry cycles as the river corridor expands and contracts. The model was used to assess and quantify the hydrologic and geochemical processes occurring in a temporary river reach (Krathis River) in Greece. Since the conventional gauging techniques cannot measure the flow in rivers that are split into small braided streams, discharge measurements could not be obtained in order to calibrate and verify the model. Other field measurements such as infiltration losses and sediment accumulation were used for model calibration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Wetlands cover at least 6 % of the Earth’s surface. They play a key role in hydrological and biogeochemical cycles, harbour a large part of the world’s biodiversity, and provide multiple services to humankind. However, pressure in the form of land reclamation, intense resource exploitation, changes in hydrology, and pollution threaten wetlands on all continents. Depending on the region, 30–90 % of the world’s wetlands have already been destroyed or strongly modified in many countries with no sign of abatement. Climate change scenarios predict additional stresses on wetlands, mainly because of changes in hydrology, temperature increases, and a rise in sea level. Yet, intact wetlands play a key role as buffers in the hydrological cycle and as sinks for organic carbon, counteracting the effects of the increase in atmospheric CO2. Eight chapters comprising this volume of Aquatic Sciences analyze the current ecological situation and the use of the wetlands in major regions of the world in the context of global climate change. This final chapter provides a synthesis of the findings and recommendations for the sustainable use and protection of these important ecosystems.  相似文献   

20.
The gravitational interaction in the Earth–Moon–Sun system is considered from the standpoint of influencing the formation of time variations in the geophysical fields and some natural processes. The analysis of the results of instrumental observations revealed the main periodicities and cycles in the time variations of subsoil radon volumetric activity with the same periods as the vertical component of the variations of the tidal force. The amplitude modulation of seismic noise by the lunar-solar tide is demonstrated. It is shown that the intensity of relaxation processes in the Earth’s crust has a near-diurnal periodicity, whereas the spectrum of groundwater level fluctuations includes clearly expressed tidal waves. Based on the data on the tilts of the Earth’s surface, the role of tidal deformation in the formation of the block motions in the Earth’s crust is analyzed. A new approach is suggested for identifying tidal waves in the atmosphere by analyzing micropulsations of the atmospheric pressure with the use of adaptive rejection filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号