首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 325 毫秒
1.
Horizontally layered (1D) earth models are often assumed as a model estimate for the interpretation of geophysical data measured along 2D geological structures. In this process, the individual data sets are usually inverted independently, and it is considered only in a later phase of interpretation that these local (1D) models have common characteristic features. Taking account of these common attributes, instead of the successive independent interpretations, the lateral variations of geometrical and petrophysical parameters can be efficiently determined for the whole 2D structure by applying a series expansion. Using global basis functions, two advantages can be achieved: (i) choosing an appropriate number of basis functions helps us to restrict the complexity of the model; (ii) the integration of all the data sets measured along the profile gives rise to the application of simultaneous or joint inversion methods. This results in a decrease of the number of independent unknowns, a higher stability during the inversion and a more accurate and reliable parameter estimation.In this paper, a joint inversion algorithm is presented using DC geoelectric apparent resistivities and refraction seismic travel times measured along various layouts above a 2D geological model. To describe lateral variations series, expansions are used, and furthermore, to improve the often used approximation of a (locally) 1D forward modelling, the integral mean value of the horizontally changing model parameters (calculated along an appropriately defined interval) is introduced. We call the inversion procedure that combines series expansions and the concept of integral mean Generalised Series Expansion (GSE) inversion. The method was developed and tested for both the simultaneous (integrating data sets of one method or methods on the same physical basis) and the joint inversion (where data sets of methods on different physical bases are joined together), using synthetic and field data sets. It is also demonstrated that the equivalence problem inherent in the independent inversion of DC geoelectric data can efficiently be resolved by the use of the joint GSE inversion method in the cases of conductive and resistive equivalent geological models.  相似文献   

2.
Electromagnetic methods are routinely applied to image the subsurface from shallow to regional structures. Individual electromagnetic methods differ in their sensitivities towards resistive and conductive structures and in their exploration depths. If a good balance between different electromagnetic data can be be found, joint 3D inversion of multiple electromagnetic datasets can result in significantly better resolution of subsurface structures than the individual inversions. We present a weighting algorithm to combine magnetotelluric, controlled source electromagnetic, and geoelectric data. Magnetotelluric data are generally more sensitive to regional conductive structures, whereas controlled source electromagnetic and geoelectric data are better suited to recover more shallow and resistive structures. Our new scheme is based on weighting individual components of the total data gradient after each model update. Norms of individual data residuals are used to assess how much of the total data gradient must be assigned to each method to achieve a balanced contribution of all datasets for the joint inverse model. Synthetic inversion tests demonstrate advantages of joint inversion in general and also the influence of the weighting. In our tests, the controlled source electromagnetic data gradients are larger than those of the magnetotelluric and geoelectric datasets. Consequently, direct joint inversion of controlled source electromagnetic, magnetotelluric, and geoelectric data results in models that are mostly dominated by structures required by the controlled source electromagnetic data. Applying the new adaptive weighting scheme results in an inversion model that fits the data better and resembles more the original model. We used the modular system electromagnetic as a framework to implement the new joint inversion and briefly describe the new modules for forward modelling and their interfaces to the modular system electromagnetic package.  相似文献   

3.
For the exploration of near-surface structures, seismic and geoelectric methods are often applied. Usually, these two types of method give, independently of each other, a sufficiently exact model of the geological structure. However, sometimes the inversion of the seismic or geoelectric data fails. These failures can be avoided by combining various methods in one joint inversion which feads to much better parameter estimations of the model than the independent inversions. A suitable seismic method for exploring near-surface structures is the use of dispersive surface waves: the dispersive characteristics of Rayleigh and Love surface waves depend strongly on the structural and petrophysical (seismic velocities) features of the near-surface Underground. Geoelectric exploration of the structure Underground may be carried out with the well-known methods of DC resistivity sounding, such as the Schlumberger, the radial-dipole and the two-electrode arrays. The joint inversion algorithm is tested by means of synthetic data. It is demonstrated that the geoelectric joint inversion of Schlumberger, radial-dipole and two-electrode sounding data yields more reliable results than the single inversion of a single set of these data. The same holds for the seismic joint inversion of Love and Rayleigh group slowness data. The best inversion result is achieved by performing a joint inversion of both geoelectric and surface-wave data. The effect of noise on the accuracy of the solution for both Gaussian and non-Gaussian (sparsely distributed large) errors is analysed. After a comparison between least-square (LSQ) and least absolute deviation (LAD) inversion results, the LAD joint inversion is found to be an accurate and robust method.  相似文献   

4.
This paper presents a short theoretical summary of the series expansion-based 2.5D combined geoelectric weighted inversion (CGWI) method and highlights the advantageous way with which the number of unknowns can be decreased due to the simultaneous characteristic of this inversion. 2.5D CGWI is an approximate inversion method for the determination of 3D structures, which uses the joint 2D forward modeling of dip and strike direction data. In the inversion procedure, the Steiner’s most frequent value method is applied to the automatic separation of dip and strike direction data and outliers. The workflow of inversion and its practical application are presented in the study. For conventional vertical electrical sounding (VES) measurements, this method can determine the parameters of complex structures more accurately than the single inversion method. Field data show that the 2.5D CGWI which was developed can determine the optimal location for drilling an exploratory thermal water prospecting well. The novelty of this research is that the measured VES data in dip and strike direction are jointly inverted by the 2.5D CGWI method.  相似文献   

5.
Seismic and geoelectric methods are often used in the exploration of near-surface structures. Generally, these two methods give, independently of one other, a sufficiently exact model of the geological structure. However, sometimes the inversion of the seismic or geoelectric data fails. These failures can be avoided by combining various methods in one joint inversion which leads to much better parameter estimations of the near-surface underground than the independent inversions. In the companion paper (Part I: basic ideas), it was demonstrated theoretically that a joint inversion, using dispersive Rayleigh and Love waves in combination with the well-known methods of DC resistivity sounding, such as Schlumberger, radial dipole-dipole and pole-pole arrays, provides a better parameter estimation. Two applications are shown: a five layer structure in Borsod County, Hungary, and a three-layer structure in Thüringen, Germany. Layer thicknesses, wave velocities and resistivities are determined. Of course, the field data sets obtained from the ‘real world’ are not as complete and as good as the synthetic data sets in the theoretical Part I. In both applications, relative model distances, in percentages, serve as quality control factors for the different inversions; the lower the relative distance, the better the inversion result. In the Borsod field case, Love wave group slowness data and Schlumberger, radial dipole-dipole and pole-pole (i.e two-electrode) data sets are processed. The independent inversion performed using the Love wave data leads to a relative model distance of 155%. An independent Schlumberger inversion results in 41%, a joint geoelectric inversion of all data sets in 15%, a joint inversion of Love wave data and all geoelectric data sets in 15% and the robust joint inversion of Love wave data and the three geoelectric data sets in 10%. In the Thüringen field case, only Rayleigh wave group slowness data and Schlumberger data were available. The independent inversion using Rayleigh wave data results in a relative model distance of 19%. The independent inversion performed using Schlumberger data leads to 34%, the joint and robust joint inversion of Rayleigh wave and Schlumberger data gave results of 18% and 20%, respectively.  相似文献   

6.
Non‐uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual layers in the horizontal dimension. The most common source of non‐uniqueness is the inversion algorithm used to generate the starting model. This study applies 1D, 1.5D and 2D inversion algorithms to traveltime data for a syncline (2D) model, in order to generate starting models for wave path eikonal traveltime tomography. The 1D tau‐p algorithm produced a tomogram with an anticline rather than a syncline and an artefact with a high seismic velocity. The 2D generalized reciprocal method generated tomograms that accurately reproduced the syncline, together with narrow regions at the thalweg with seismic velocities that are less than and greater than the true seismic velocities as well as the true values. It is concluded that 2D inversion algorithms, which explicitly identify forward and reverse traveltime data, are required to generate useful starting models in the near‐surface where irregular refractors are common. The most likely tomogram can be selected as either the simplest model or with a priori information, such as head wave amplitudes. The determination of vertical velocity functions within individual layers is also subject to non‐uniqueness. Depths computed with vertical velocity gradients, which are the default with many tomography programs, are generally 50% greater than those computed with constant velocities for the same traveltime data. The average vertical velocity provides a more accurate measure of depth estimates, where it can be derived. Non‐uniqueness is a fundamental reality with the inversion of all near‐surface seismic refraction data. Unless specific measures are taken to explicitly address non‐uniqueness, then the production of a single refraction tomogram, which fits the traveltime data to sufficient accuracy, does not necessarily demonstrate that the result is either ‘correct’ or the most probable.  相似文献   

7.
8.
Mud volcanism is commonly observed in Azerbaijan and the surrounding South Caspian Basin. This natural phenomenon is very similar to magmatic volcanoes but differs in one considerable aspect: Magmatic volcanoes are generally the result of ascending molten rock within the Earth's crust, whereas mud volcanoes are characterised by expelling mixtures of water, mud, and gas. The majority of mud volcanoes have been observed on ocean floors or in deep sedimentary basins, such as those found in Azerbaijan. Furthermore, their occurrences in Azerbaijan are generally closely associated with hydrocarbon reservoirs and are therefore of immense economic and geological interest. The broadside long‐offset transient electromagnetic method and the central‐loop transient electromagnetic method were applied to study the inner structure of such mud volcanoes and to determine the depth of a resistive geological formation that is predicted to contain the majority of the hydrocarbon reservoirs in the survey area. One‐dimensional joint inversion of central‐loop and long‐offset transient electromagnetic data was performed using the inversion schemes of Occam and Marquardt. By using the joint inversion models, a subsurface resistivity structure ranging from the surface to a depth of approximately 7 km was determined. Along a profile running perpendicular to the assumed strike direction, lateral resistivity variations could only be determined in the shallow depth range using the transient electromagnetic data. An attempt to resolve further two‐dimensional/three‐dimensional resistivity structures, representing possible mud migration paths at large depths using the long‐offset transient electromagnetic data, failed. Moreover, the joint inversion models led to ambiguous results regarding the depth and resistivity of the hydrocarbon target formation due to poor resolution at great depths (>5 km). Thus, 1D/2D modelling studies were subsequently performed to investigate the influence of the resistive terminating half‐space on the measured long‐offset transient electromagnetic data. The 1D joint inversion models were utilised as starting models for both the 1D and 2D modelling studies. The results tend to show that a resistive terminating half‐space, implying the presence of the target formation, is the favourable geological setting. Furthermore, the 2D modelling study aimed to fit all measured long‐offset transient electromagnetic Ex transients along the profile simultaneously. Consequently, 3125 2D forward calculations were necessary to determine the best‐fit resistivity model. The results are consistent with the 1D inversion, indicating that the data are best described by a resistive terminating half‐space, although the resistivity and depth cannot be determined clearly.  相似文献   

9.
10.
Joint inversion of teleseismic P-waveforms and local group velocities of surface waves retrieved from ambient seismic noise has been performed to model velocity structure of the crust and uppermost mantle of the Bohemian Massif. We analysed P-waveforms of 381 teleseismic earthquakes recorded at 54 broadband seismic stations located on the territory of the Czech Republic and in its close surroundings. Group velocities of Rayleigh and Love surface waves were obtained by cross-correlating long-term recordings of seismic noise. The basis for waveform inversion is the well-known methodology of P-to-S receiver functions constructed from converted phases. Due to instabilities in direct inversion of receiver functions caused by the necessity of applying deconvolution, we propose an alternative formulation to fit observed and calculated radial components of P waveforms. The joint inversion is transformed into a search for the minimum of the cost function defined as a weighted sum of waveform and group velocity misfits. With the use of the robust stochastic optimizer (Differential Evolution Algorithm), neither derivatives nor a starting model are needed. The task was solved for 1D layered isotropic models of the crust and the uppermost mantle. We have performed a sequence of inversions with models containing one, two, three and four layers above a half-space. By using statistical criteria (F-test) we were able to select the simplest velocity models satisfying data and representing local geological structures. Complex crustal models are typical for stations located close to boundaries of major tectonic units. The relatively low average P to S wave-velocity ratio is in agreement with the generally accepted view that the BM crust is predominantly felsic.  相似文献   

11.

It is preferable to use the three-dimensional (3D) magnetotelluric inversion, which provides volumetric geoelectric models, to handle the array input data. However, the soundings are frequently conducted on the single profiles or on the profiles that are considerably spaced apart from each other. We explore the possibilities of the 3D inversion of such data by the example of a three-layer model containing three local inhomogeneities. We previously showed that the simple processing of the data and their 1D or 2D inversion enable reconstructing the background cross section and locating all the three inhomogeneities. In the present paper, we use this information for constructing several versions of the starting model and carrying out the smoothing 3D inversion of the data. The experiments show that if the background cross section is incorporated into the starting model, the final model provided by the inversion closely reproduces the real distribution of all geoelectric parameters. At the same time, if the starting model that hosts the inhomogeneities has the form of a homogeneous half-space, the inversion is not able to reconstruct an adequate final model.

  相似文献   

12.
Until the present time the ‘ rock-coal-rock’ layer sequence and offsets in coal-seams in underground coal mines have been detected with the aid of seismic waves and geoelectric measurements. In order to determine the geometrical and petrophysical parameters of the coal-seam situation, the data recorded using seismic and geoelectric methods have been inverted independently. In consequence, the inversion of partially inaccurate data resulted in a certain degree of ambiguity. This paper presents the first results of a joint inversion scheme to process underground vertical seismic profiling data, geolectric resistivity and resistance data. The joint inversion algorithm makes use of the damped least-squares method and its weighted version to solve the linearized set of equations for the seismic and geolectric unknowns. In order to estimate the accuracy and reliability of the derived geometrical and petrophysical layer parameters, both a model covariance matrix and a correlation matrix are calculated. The weighted least-squares algorithm is based on the method of most frequent values (MFV). The weight factors depend on the difference between measured data and those calculated by an iteration process. The joint inversion algorithm is tested by means of synthetic data. Compared to the damped least-squares algorithm, the MFV inversion leads to smaller estimation errors as well as lower sensitivities due to the choice of the initial model. It is shown that, compared to an independent inversion, the correlation between the model parameters is definitely reduced, while the accuracy of the parameter estimation is appreciably increased by the joint inversion process. Thus the ambiguity is significantly reduced. Finally, the joint inversion algorithm using the MFV method is applied to underground field data. The model parameters can be derived with a sufficient degree of accuracy, even in the case of noisy data.  相似文献   

13.
We explore the link between basin modelling and seismic inversion by applying different rock physics models. This study uses the E‐Dragon II data in the Gulf of Mexico. To investigate the impact of different rock physics models on the link between basin modelling and seismic inversion, we first model relationships between seismic velocities and both (1) porosity and (2) effective stress for well‐log data using published rock physics models. Then, we build 1D basin models to predict seismic velocities derived from basin modelling with different rock physics models, in a comparison with average sonic velocities measured in the wells. Finally, we examine how basin modelling outputs can be used to aid seismic inversion by providing constraints for the background low‐frequency model. For this, we run different scenarios of inverting near angle partial stack seismic data into elastic impedances to test the impact of the background model on the quality of the inversion results. The results of the study suggest that the link between basin modelling and seismic technology is a two‐way interaction in terms of potential applications, and the key to refine it is establishing a rock physics models that properly describes changes in seismic signatures reflecting changes in rock properties.  相似文献   

14.
Time‐domain marine controlled source electromagnetic methods have been used successfully for the detection of resistive targets such as hydrocarbons, gas hydrate, or marine groundwater aquifers. As the application of time‐domain marine controlled source electromagnetic methods increases, surveys in areas with a strong seabed topography are inevitable. In these cases, an important question is whether bathymetry information should be included in the interpretation of the measured electromagnetic field or not. Since multi‐dimensional inversion is still not common in time‐domain marine controlled source electromagnetic methods, bathymetry effects on the 1D inversion of single‐offset and multi‐offset joint inversions of time‐domain controlled source electromagnetic methods data are investigated. We firstly used an adaptive finite element algorithm to calculate the time‐domain controlled source electromagnetic methods responses of 2D resistivity models with seafloor topography. Then, 1D inversions are applied on the synthetic data derived from marine resistivity models, including the topography in order to study the possible topography effects on the 1D interpretation. To evaluate the effects of topography with various steepness, the slope angle of the seabed topography is varied in the synthetic modelling studies for deep water (air interaction is absent or very weak) and shallow water (air interaction is dominant), respectively. Several different patterns of measuring configurations are considered, such as the systems adopting nodal receivers and the bottom‐towed system. According to the modelling results for deep water when air interaction is absent, the 2D topography can distort the measured electric field. The distortion of the data increases gradually with the enlarging of the topography's slope angle. In our test, depending on the configuration, the seabed topography does not affect the 1D interpretation significantly if the slope angle is less or around 10°. However, if the slope angle increases to 30° or more, it is possible that significant artificial layers occur in inversion results and lead to a wrong interpretation. In a shallow water environment with seabed topography, where the air interaction dominates, it is possible to uncover the true subsurface resistivity structure if the water depth for the 1D inversion is properly chosen. In our synthetic modelling, this scheme can always present a satisfactory data fit in the 1D inversion if only one offset is used in the inversion process. However, the determination of the optimal water depth for a multi‐offset joint inversion is challenging due to the various air interaction for different offsets.  相似文献   

15.
It is preferable to use the three-dimensional (3D) magnetotelluric inversion, which provides volumetric geoelectric models, to handle the array input data. However, the soundings are frequently conducted on the single profiles or on the profiles that are considerably spaced apart from each other. We explore the possibilities of the 3D inversion of such data by the example of a three-layer model containing three local inhomogeneities. We previously showed that the simple processing of the data and their 1D or 2D inversion enable reconstructing the background cross section and locating all the three inhomogeneities. In the present paper, we use this information for constructing several versions of the starting model and carrying out the smoothing 3D inversion of the data. The experiments show that if the background cross section is incorporated into the starting model, the final model provided by the inversion closely reproduces the real distribution of all geoelectric parameters. At the same time, if the starting model that hosts the inhomogeneities has the form of a homogeneous half-space, the inversion is not able to reconstruct an adequate final model.  相似文献   

16.
三维多层介质重力-地震同步联合反演   总被引:1,自引:0,他引:1       下载免费PDF全文
联合反演是地球物理勘探的重要解释手段,能够提高模型参数的反演精度.本文在归纳和分析重力与地震资料联合反演的研究和应用现状的基础上,利用三维多层介质模型的地震走时和重力正演公式,推导了地震走时和重力异常对界面深度的雅可比矩阵,实现了三维重力-地震同步联合反演界面成像.最后进行了数值理论模型模拟和实例计算,结果表明地震走时和重力同步联合反演很好的重建了三维多层介质界面.  相似文献   

17.
Multiple scattering is usually ignored in migration algorithms, although it is a genuine part of the physical reflection response. When properly included, multiples can add to the illumination of the subsurface, although their crosstalk effects are removed. Therefore, we introduce full‐wavefield migration. It includes all multiples and transmission effects in deriving an image via an inversion approach. Since it tries to minimize the misfit between modeled and observed data, it may be considered a full waveform inversion process. However, full‐wavefield migration involves a forward modelling process that uses the estimated seismic image (i.e., the reflectivities) to generate the modelled full wavefield response, whereas a smooth migration velocity model can be used to describe the propagation effects. This separation of modelling in terms of scattering and propagation is not easily achievable when finite‐difference or finite‐element modelling is used. By this separation, a more linear inversion problem is obtained. Moreover, during the forward modelling, the wavefields are computed separately in the incident and scattered directions, which allows the implementation of various imaging conditions, such as imaging reflectors from below, and avoids low‐frequency image artefacts, such as typically observed during reverse‐time migration. The full wavefield modelling process also has the flexibility to image directly the total data (i.e., primaries and multiples together) or the primaries and the multiples separately. Based on various numerical data examples for the 2D and 3D cases, the advantages of this methodology are demonstrated.  相似文献   

18.
19.
郑现  赵翠萍  郑斯华 《地震学报》2019,41(2):194-206
本文模拟使用青藏高原东南缘区域台网及国家台网的170个宽频台站基于背景噪声、天然地震面波、P波接收函数反演时的实际数据,对青藏高原东南缘假定的初始模型进行恢复,通过计算初始模型台站下方纯路径频散、提取各台站对间的瑞雷波频散曲线、计算理论接收函数以及反演剪切波速度结构来测试使用不同单项数据与联合使用多种数据反演对初始模型的恢复程度。结果表明,同时使用接收函数、基于噪声经验格林函数的群速度、相速度频散以及基于天然地震面波的相速度频散联合反演的剪切波速度结构,充分利用了几种数据的分辨率优势,清晰地分辨出中下地壳及上地幔顶部的低速层。此外,本文也分析了实际数据处理中出现的计算误差、随机噪声干扰对计算结果稳定性的影响。结果显示:对于面波频散,加入1%的误差后,联合反演的结果仍可很好地反映低速层的形态,但是当误差提升至5%后,对最终结果则产生了一定程度的影响;而在接收函数中加入4%的随机噪声时,虽然地幔低速层的上界面和下界面会略微受到随机噪声的影响,但是低速层的深度范围和速度值均得到了较好的恢复。  相似文献   

20.
In this paper we present a case history of seismic reservoir characterization where we estimate the probability of facies from seismic data and simulate a set of reservoir models honouring seismically‐derived probabilistic information. In appraisal and development phases, seismic data have a key role in reservoir characterization and static reservoir modelling, as in most of the cases seismic data are the only information available far away from the wells. However seismic data do not provide any direct measurements of reservoir properties, which have then to be estimated as a solution of a joint inverse problem. For this reason, we show the application of a complete workflow for static reservoir modelling where seismic data are integrated to derive probability volumes of facies and reservoir properties to condition reservoir geostatistical simulations. The studied case is a clastic reservoir in the Barents Sea, where a complete data set of well logs from five wells and a set of partial‐stacked seismic data are available. The multi‐property workflow is based on seismic inversion, petrophysics and rock physics modelling. In particular, log‐facies are defined on the basis of sedimentological information, petrophysical properties and also their elastic response. The link between petrophysical and elastic attributes is preserved by introducing a rock‐physics model in the inversion methodology. Finally, the uncertainty in the reservoir model is represented by multiple geostatistical realizations. The main result of this workflow is a set of facies realizations and associated rock properties that honour, within a fixed tolerance, seismic and well log data and assess the uncertainty associated with reservoir modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号