首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The explosive behavior and the rheology of lavas in basaltic volcanoes, usually driven by differentiation, can also be significantly affected by the kinetics of magma degassing in the upper portion of the feeding system. The complex eruption of 2001 at Mt. Etna, Italy, was marked by two crucial phenomena that occurred at the Laghetto vent on the southern flank of the volcano: 1) intense explosive activity and 2) at the end of the eruption, emission of a lava flow with higher viscosity than flows previously emitted from the same vent. Here, we investigate the hypothesis that these events were driven by the injection of volatile-rich magma into the feeding system. The input and mixing of this magma into a reservoir containing more evolved magma had the twofold effect of increasing 1) the overall concentration of volatiles and 2) their exsolution with consequent efficient vesiculation and degassing. This led to an explosive stage of the eruption, which produced a ~75-m-high cinder cone. Efficient volatile loss and the consequent increase of the liquidus temperature brought about the nucleation of Fe-oxides and other anhydrous crystalline phases, which significantly increased the magma viscosity in the upper part of the conduit, leading to the emission of a high viscosity lava flow that ended the eruption. The 2001 eruption has offered the opportunity to investigate the important role that input of volatile-rich magma may exert in controlling not only the geochemical features of erupted lavas but also the eruption dynamics. These results present a new idea for interpreting similar eruptions in other basaltic volcanoes and explaining eruptions with uncommonly high explosivity when only basic magmas are involved.  相似文献   

2.
To understand how large submarine lava terraces form and why they are not commonly observed on land, we developed an isoviscous gravity flow model on an inclined surface to simulate the evolution and emplacement of lava flows under submarine conditions. By solving this preliminary model using a finite difference method, we are able to quantify how lava viscosity, pre-existing topographic slope, effusion rate, and lava volume affect meso-scale lava morphology. Our simulations show that, in general, high lava viscosity, gentle regional slope, and low effusion rate favor the formation of large terraces, but environmental conditions also play an important role. A gravity flow spreads more slowly underwater than subaerially. We also conclude that for low viscosity basaltic lava, the cooling of the lava body is one of the most critical factors that affect its shape. This study shows that the isoviscous model, though oversimplified, provides a quantitative tool to relate lava morphology to eruption characteristics. To gain a better understanding of the controls on submarine lava terrace formation, future models must take into account the temporal and spatial variation of lava viscosity, especially the effects of a brittle outer shell.  相似文献   

3.
The lava section in the Troodos ophiolite, Cyprus, is chemically stratified and divided into a shallow lava sequence with low TiO2 content and a deeper lava sequence with high TiO2 content. We calculate the viscosity at magmatic temperature based on major element chemistry of lavas in Cyprus Crustal Study Project (CCSP) Holes CY-1 and 1A. We find that typical shallow low-Ti lavas have a magmatic viscosity that is two to three orders of magnitude lower than that of the deeper high-Ti lavas. This implies that, after eruption on-axis, Troodos low-Ti lavas would have been able to flow down the same slope faster and farther than high-Ti lavas. The calculated lava viscosity increases systematically from the lava-sediment interface to the bottom of the composite Hole CY-1/1A. This suggests that an efficient process of lava segregation by viscosity on the upper flanks of the paleo Troodos rise may have been responsible for the chemical stratification in the Troodos lava pile. Calculated magmatic temperature and molar Mg/(Mg+Fe), or Mg#, decrease systematically down-section, while SiO2 content increases. Correlation of Mg# in the lavas with Mg# in the underlying, lower crustal plutonic rocks sampled by CCSP Hole CY-4 shows that the shallow lavas came from a high-temperature, lower crustal magma reservoir which is now represented by high-Mg# pyroxenite cumulates, while the deeper lavas were erupted from a lower-temperature, mid-crustal reservoir which is now represented by gabbroic cumulates with lower Mg#.  相似文献   

4.
 On King George Island during latest Oligocene/earliest Miocene time, submarine eruptions resulted in the emplacement of a small (ca. 500 m estimated original diameter) basalt lava dome at Low Head. The dome contains a central mass of columnar rock enveloped by fractured basalt and basalt breccia. The breccia is crystalline and is a joint-block deposit (lithic orthobreccia) interpreted as an unusually thick dome carapace breccia cogenetic with the columnar rock. It was formed in situ by a combination of intense dilation, fracturing and shattering caused by natural hydrofracturing during initial dome effusion and subsequent endogenous emplacement of further basalt melt, now preserved as the columnar rock. Muddy matrix with dispersed hyaloclastite and microfossils fills fractures and diffuse patches in part of the fractured basalt and breccia lithofacies. The sparse glass-rich clasts formed by cooling-contraction granulation during interaction between chilled basalt crust and surrounding water. Together with muddy sediment, they were injected into the dome by hydrofracturing, local steam fluidisation and likely explosive bulk interaction. The basalt lava was highly crystallised and degassed prior to extrusion. Together with a low effusion temperature and rapid convective heat loss in a submarine setting, these properties significantly affected the magma rheology (increased the viscosity and shear strength) and influenced the final dome-like form of the extrusion. Conversely, high heat retention was favoured by the degassed state of the magma (minimal undercooling), a thick breccia carapace and viscous shear heating, which helped to sustain magmatic (eruption) temperatures and enhanced the mobility of the flow. Received: 1 August 1996 / Accepted: 15 September 1997  相似文献   

5.
Andesitic–dacitic volcanoes exhibit a large variety of eruption styles, including explosive eruptions, endogenous and exogenous dome growth, and kilometer-long lava flows. The rheology of these lavas can be investigated through field observations of flow and dome morphology, but this approach integrates the properties of lava over a wide range of temperatures. Another approach is through laboratory experiments; however, previous studies have used higher shear stresses and strain rates than are appropriate to lava flows. We measured the apparent viscosity of several lavas from Santiaguito and Bezymianny volcanoes by uniaxial compression, between 1,109 and 1,315?K, at low shear stress (0.085 to 0.42?MPa), low strain rate (between 1.1?×?10?8 and 1.9?×?10?5?s?1), and up to 43.7 % total deformation. The results show a strong variability of the apparent viscosity between different samples, which can be ascribed to differences in initial porosity and crystallinity. Deformation occurs primarily by compaction, with some cracking and/or vesicle coalescence. Our experiments yield apparent viscosities more than 1 order of magnitude lower than predicted by models based on experiments at higher strain rates. At lava flow conditions, no evidence of a yield strength is observed, and the apparent viscosity is best approached by a strain rate- and temperature-dependent power law equation. The best fit for Santiaguito lava, for temperatures between 1,164 and 1,226?K and strain rates lower than 1.8?×?10?4?s?1, is $ \log {\eta_{\text{app}}} = - 0.738 + 9.24 \times {10^3}{/}T(K) - 0.654 \cdot \log \dot{\varepsilon } $ where η app is apparent viscosity and $ \dot{\varepsilon } $ is strain rate. This equation also reproduced 45 data for a sample from Bezymianny with a root mean square deviation of 0.19 log unit Pa?s. Applying the rheological model to lava flow conditions at Santiaguito yields calculated apparent viscosities that are in reasonable agreement with field observations and suggests that internal shear heating may be significant ongoing heat source within these flows, enabling highly viscous lava to travel long distances.  相似文献   

6.
A seafloor lava field was mapped within the summit caldera of Axial Volcano, Juan de Fuca Ridge, using SeaMARC I sidescan sonor and submersible observations. By analogy with similar subaerial features, we infer that several volcanic seafloor features here formed by the process of lava flow inflation. Flow inflation occurs within tube-fed lava flows when lava continues to be supplied to the interior of a flow that has ceased advancing, thus uplifting the flow's rigid surface and creating a suite of characteristic surface structures. Inflated lavas require a feeder lava tube or tube system connected to a remote lava source, and therefore we infer that inflated submarine lava flows contain lava tubes. Inflated flow features identified from sidescan sonar images elsewhere on Axial Volcano and within the axial valley of the southern Juan de Fuca ridge suggest that flow inflation is a widespread submarine volcanic process.  相似文献   

7.
Trachytic lavas of Rishiri Volcano, northern Japan, show a peculiar geochemical variation across lava flow units. Samples collected systematically in a vertical cross section from a lava flow unit with a thickness of about 20 m are nearly homogeneous in major element compositions. However, some trace elements, including Li, B and Cs, are considerably depleted in samples collected from the main part of the flow unit, compared to those obtained from the surface of the lava flow (clinker layer). In particular, Cs content of the main flow unit is as low as ∼30% of the clinker layer. 11B / 10B ratios of samples from the main flow unit are also slightly lower than those of the clinker samples, and the isotope compositions positively correlate with boron concentrations. These geochemical variations cannot be explained by magmatic processes in magma chambers, post-eruptive weathering, or alteration process. Rather, we infer these systematics resulted from escape of these elements from the lava flow unit during post-eruptive degassing. Vapor phases in which Li, B and Cs dissolved are suggested to have been transported through veins formed in the main flow unit as fractures due to slight shearing along the flow planes after lava emplacement. In the Tanetomi lava, only rocks of the clinker layer preserve original composition of magmas, although they are porous and brownish due to extensive oxidization. On the other hand, rocks of the main flow unit do not retain original magma compositions, although they are dense and grayish, and seem to be much fresher compared to the clinkers. A similar geochemical modification of lavas can occur in other volcanic systems, especially for lavas consisting of relatively thick flow units.  相似文献   

8.
Jun-Ichi  Kimura  Mamiko  Tateno  Isaku  Osaka 《Island Arc》2005,14(2):115-136
Abstract   The geology and geochemistry of pyroclastic flows and fallout tephras formed during the Karasugasen dome eruption in the Daisen–Hiruzen Volcano Group in southwest Japan have been examined in detail. The Karasugasen lava dome erupted at about 26 ka. The eruption began with a vulcanian ash fall, and this was followed by at least eight block and ash flows and a pumice flow. The block and ash flows were produced by the successive collapses of a growing lava dome. This main eruption phase was followed by an eruption of vulcanian ash falls, and finally ended with a sub-Plinian pumice fall. This eruption sequence is typical of the Daisen Volcano during the last three eruption events, which occurred at 58, 26 and 17 ka. The magma produced during the Karasugasen eruption was a typical adakite, with extremely high Sr/Y ratios and low HREE/LREE ratios compared to normal arc lavas. The chemistry of the Karasugasen lavas is almost identical to other Daisen–Hiruzen lavas that were produced from eruptions over an interval of a million years. The continuous supply of a huge amount of adakitic magma (>100 km3) for such a long period suggests a massive homogeneous source material, such as molten Philippine Sea Plate slab. Slab melting is a plausible mechanism for the production of the adakitic lavas at Karasugasen, and hence the Daisen–Hiruzen Volcano Group.  相似文献   

9.
The magma eruption rates of Merapi volcano form 1890 to 1992 are re-examined chronologically. For this volcano, movements of extruded lavas and domes as well as their extrusions are important because they control the modes of the subsequent activities and cause nuées ardentes and lahars. The monthly eruption rates varied widely, but the cumulative volume of lavas has increased linearly and is expressed as 0.1x106 m3/month. The magma production rate of this volcano may have been constant for these 100 years. Recurrent excessive effusion of lavas is tentatively interpreted by assuming a magma reservoir. The averaged eruption rate is small in comparison with other volcanoes such as Nyramuragia, Kilauea and Vesuvio. However, it is remarkable that the activity has been continuous for these 100 years and the total amount of lava discharged during this period reached more than 108 m3. A simple model for the formation of the 1992 lava dome is presented. The viscosity of the lavas is probably between 106 and 107 P and the length of the magma conduit is probably less than 10 km.  相似文献   

10.
Since the mechanical properties of lava change over time, lava flows represent a challenge for physically based modeling. This change is ruled by a temperature field which needs to be modeled. MAGFLOW Cellular Automata (CA) model was developed for physically based simulations of lava flows in near real-time. We introduced an algorithm based on the Monte Carlo approach to solve the anisotropic problem. As transition rule of CA, a steady-state solution of Navier-Stokes equations was adopted in the case of isothermal laminar pressure-driven Bingham fluid. For the cooling mechanism, we consider only the radiative heat loss from the surface of the flow and the change of the temperature due to mixture of lavas between cells with different temperatures. The model was applied to reproduce a real lava flow that occurred during the 2004–2005 Etna eruption. The simulations were computed using three different empirical relationships between viscosity and temperature.  相似文献   

11.
Hazardous explosive activity may sporadically accompany the extrusion of silicic lava domes. Modelling of the emplacement of silicic domes is therefore an important task for volcanic hazard assessment. Such modelling has been hampered by a lack of a sufficiently accurate rheological database for silicic lavas with crystals and vesicles. In the present study, the parallel-plate viscometry method was applied to determine the shear viscosity of five natural rhyolitic samples from a vertical section through the Ben Lomond lava dome, Taupo Volcanic Centre, New Zealand. Rheological measurements were performed at volcanologically relevant temperatures (780-950°C) and strain rates (10-5-10-7 s-1). Although these samples are in the metastable state, viscosity determinations, melt composition, as well as water and crystal contents of samples were demonstrably stable during experiments. For samples containing up to 5 vol.% microlites, the composition of the melt, rather than the physical effect of suspended crystals, had greater influence on the effective viscosity of the silicic magma. Samples with 10 vol.% microlites and containing a flow banding defined by microlites show no significant orientational effects on apparent viscosity. The rheological measurements were used together with a simple cooling model to construct thermal and viscosity profiles revealing conditions during the emplacement of the Ben Lomond lava dome.  相似文献   

12.
Pillow talk     
Three distinct types of pillows and pillow lava sequences with different modes of origin have been recognized in the extrusive sequences comprising the upper parts of ophiolite complexes that represent the mafic portion of the floor of an Early Cretaceous back-arc basin in southern Chile. One type of pillow formed by non-explosive submarine effusion. A second type formed by magmatic intrusion into pre-existing aquagene tuff formed by explosive eruption. The third type of pillow occurs within dikes, forming pillowed dikes, possibly as a result of vapor streaming within a cooling dike. Where studied in southern Chile, aquagene tuffs and intrusive pillows decrease and water-lain pillows increase in relative abundance from north to south. This variation corresponds with a north-to-south decrease in both the relative volume of extrusives to extensional dikes and the range and volume of differentiated rocks, suggesting a southward increase in rate of extension relative to rate of magma supply within the spreading ridges at which the ophiolites formed. In the northern part of the original basin where the rate of extension was small relative to the rate of magma supply, magma remained in magma chambers longer, resulting in a greater range and volume of differentiated rocks. The larger volume of more differentiated, cooler and more viscous magmas, in conjunction with the likelihood of more violent eruption of volatile-rich differentiates, may have been responsible for the large volume of aquagene tuff in the northern part of the original basin. These observations in southern Chile suggest that ophiolites which contain a great abundance of aquagene tuffs and intrusive pillow lavas formed in tectonic environments in which the rate of extension was small relative to the rate of magma supply (island arcs, embryonic marginal basins). Ophiolites with predominantly water-lain pillowed and massive lavas formed in tectonic environments in which the rate of extension was large relative to the rate of magma supply (mid-ocean ridges, mature back-arc basins). Thus geologic field data may supplement geochemical data as a tool in distinguishing the original igneous-tectonic environments in which ophiolites originate.  相似文献   

13.
The contribution of intrusive complexes to volcano growth is attested by field observations and by the monitoring of active volcanoes. We used numerical simulations to quantitatively estimate the relative contributions to volcano growth of elastic dislocations related to dyke intrusions and of the accumulation of lava flows. The ground uplift induced by dyke intrusions was calculated with the equations of Okada (Bull. Seismol. Soc. Am., 75 (1985) 1135). The spreading of lava flows was simulated as the flow of a Bingham fluid.With realistic parameters for dyke statistics and lava-flow rheology we find the contribution of dyke intrusions to the growth of a basaltic shield archetype to be about 13% in terms of volume and 30% in terms of height. The result is strongly dependent on the proportion of dykes reaching the surface to feed a lava flow. Systematic testing of the model indicates that edifices tend to be high and steep if dykes are thick and high, issued from a small and shallow magma chamber, and if they feed lava flows of high yield strength.The simulation was applied to Ko'olau (O'ahu Is., Hawai'i) and Piton de la Fournaise (Réunion Is.) volcanoes. The simulation of Ko'olau with dyke parameters as described by Walker (Geology, 14 (1986) 310; U.S. Geol. Surv. Prof. Pap., 1350 (1987) 961) and with lava-flow characteristics collected at Kilauea volcano (Hawai'i Is.) results in an edifice morphology very close to that of the real volcano. The best fit model of the Piton de la Fournaise central cone, with its steep slope and E–W elongation, is obtained by the intrusion of 10 000 short and thick dykes issued from a very small and shallow magma chamber and feeding only 700 low-volume lava flows. The same method may be applied to the growth of basaltic shields and other volcano types in different environments, including non-terrestrial volcanism.  相似文献   

14.
In laboratory experiments designed to model lava flow processes, liquid polyethylene glycol wax is forced through either a small hole or a long narrow slit onto the base of a tank of cold water, where it spreads laterally while cooling and solidifying at its surface. We observe the surface structure of the flow, and its dependence on the flow rate, thermal conditions and basal roughness. In each case, solidification of a crust during spreading gives rise to a number of different surface morphologies, each of which forms under a restricted range of conditions. The dominant morphologies, referred to as “pillows”, “rifts”, transverse folds, and marginal levees, correspond to features observed on natural lava flows. Results for radial spreading over a rough base and for spreading in two directions from the line source over both smooth and rough bases complement those reported earlier for radial spreading of solidifying wax from a point source on a smooth base. Together they indicate a robust dependence of morphology on the distance from the vent at which solid crust begins to form. This distance is, in turn, determined by the extrusion rate, the rheology of the liquid wax (or magma), the reduced gravity, the magnitude of the surface heat flux, and the amount of cooling required to solidify the flow surface. The results also indicate factors influencing the distribution of crust and its deformation, and may provide a means by which observations of surface morphology can be used to place constraints on the emplacement conditions of lava flows.  相似文献   

15.
Long-lived basaltic eruptions often produce structurally complex, compound `a`ā flow fields. Here we reconstruct the development of a compound flow field emplaced during the 2001 eruption of Mt. Etna (Italy). Following an initial phase of cooling-limited advance, the reactivation of stationary flows by superposition of new units caused significant channel drainage. Later, blockages in the channel and effusion rate variations resulted in breaching events that produced two new major flow branches. We also examined small-scale, late-stage ‘squeeze-up’ extrusions that were widespread in the flow field. We classified these as ‘flows’, ‘tumuli’ or ‘spines’ on the basis of their morphology, which depended on the rheology, extrusion rate and cooling history of the lava. Squeeze-up flows were produced when the lava was fluid enough to drain away from the source bocca, but fragmented to produce blade-like features that differed markedly from `a`ā clinker. As activity waned, increased cooling and degassing led to lava arriving at boccas with a higher yield strength. In many cases this was unable to flow after extrusion, and laterally extensive, near-vertical sheets of lava developed. These are considered to be exogenous forms of tumuli. In the highest yield strength cases, near-solid lava was extruded from the flow core as a result of ramping, forming spines. The morphology and location of the squeeze-ups provides insight into the flow rheology at the time of their formation. Because they represent the final stages of activity of the flow, they may also help to refine estimates of the most advanced rheological states in which lava can be considered to flow. Our observations suggest that real-time monitoring of compound flow field evolution may allow complex processes such as channel breaching and bocca formation to be forecast. In addition, documenting the occurrence and morphology of squeeze-ups may allow us to determine whether there is any risk of a stalled flow front being reactivated. This will therefore enhance our ability to track and assess hazard posed by lava flow emplacement.  相似文献   

16.
The lavas of the 1955 east rift eruption of Kilauea Volcano have been the object of considerable petrologic interest for two reasons. First, the early 1955 lavas are among the most differentiated ever erupted at Kilauea, and second, the petrographic character and chemical composition of the lava being erupted changed significantly during the eruption. This shift, from more differentiated (MgO=5.0–5.7%) to more magnesian (MgO=6.2–6.8%) lava, has been variously interpreted, as either due to systematic excavation of a zoned, differentiated magma body, or to invasion of the differentiated magma by more primitive magma, followed by rapid mixing and eruption of the resulting hybrid magmas. Petrologic examination of several nearvent spatter samples of the late 1955 lavas shows abundant evidence for magma mixing, including resorbed and/or reversely zoned crystals of olivine, augite and plagioclase. In addition, the compositional ranges of olivine, plagioclase and groundmass sulfide are very large, implying that the assemblages are hybrid. Core compositions of olivine phenocrysts range from Fo85 to Fo77. The most magnesian olivines in these samples must have originally crystallized from a melt containing 8.0–8.5% MgO, which is distinctly more magnesian than the bulk composition of the late 1955 lavas. The majorelement and trace-element data are either permissive or supportive of a hybrid origin for the late 1955 lavas. In particular, the compositional trends of the 1955 lavas on plots of CaO vs MgO, and the virtual invariance of Al2O3 and Sr in these plagioclase-phyric lavas are more easily explained by magma mixing than by fractionation. The pattern of internal disequilibrium/re-equilibration in the late 1955 spatter samples is consistent with reintrusion and mixing having occurred at least twice, during the latter part of the 1955 eruption. Plagioclase zonation preserves possible evidence for additional, earlier reintrusion events. Least-squares modelling the mixing of early 1955 bulk compositions with various summit lavas±olivine pick the 1952 summit lava as most like the primitive component. The results also indicate the primitive component had MgO=7.5–8.0%, corresponding to liquidus temperatures of 1165–1175°C. The absence of Fe-Ti oxide phenocrysts in the late 1955 lavas implies that the cooler component of the hybrid had T>1110°C. Thus the thermal contrast between the two components may have been as much as 55–65°C, sufficient to produce the conspicuous disequilibrium effects visible in the spatter samples.  相似文献   

17.
Magnetic properties of two apparently unrelated lava suites (one tholeiitic and the other alkalic) coexisting in the central parts of the Peninsula of Baja California, Mexico, were measured in this study. Macroscopic indicators and measurements of anisotropy of magnetic susceptibility (AMS) were combined to infer the flow direction on those lavas. These measurements were used to investigate the likelihood of the existence of an abnormally long tholeiitic lava flow in this part of the Peninsula. The obtained results indicate that the tholeiitic flows in the region constitute regular length flows, and are likely to have been issued through vents located within the area of study. Additionally, comparison of the magnetic signature of tholeiitic and alkalic lavas reveals a systematic difference in some of the magnetic parameters (bulk susceptibility and Curie temperatures). In particular, it is proposed that the narrow range of Curie temperatures characteristic of each lava type can be used as a reliable proxy for the identification of each lava type in the region. All of these findings show that the alkalic and tholeiitic lavas of the region are more closely related to each other than previously suspected.Editorial responsibility: R. Cioni  相似文献   

18.
Lava flux and a low palaeoslope were the critical factors in determining the development of different facies in the Late Permian Blow Hole flow, which comprises a series of shoshonitic basalt lavas and associated volcaniclastic detritus in the southern Sydney Basin of eastern Australia. The unit consists of a lower lobe and sheet facies, a middle tube and breccia facies, and an upper columnar-jointed facies. Close similarities in petrography and geochemistry between the basalt lavas from the three facies suggest similar viscosities at similar temperatures. Sedimentological and palaeontological evidence from the sedimentary units immediately below the Blow Hole flow suggests that the lower part of the volcanic unit was emplaced in a cold water, shallow submarine environment, but at least the top of the uppermost lava was subaerial with some palaeosol development. The lower lobe and sheet facies was emplaced on a low slope (<2°) in a lower to middle shoreface environment with water depths of 20–25 m. Lava may have transgressed from subaerial to subaqueous and was emplaced relatively passively with lava flux sufficiently high and uniform to form lobes and sheets rather than pillows. The middle unit probably originated from a subaerial vent and flowed into a shallow (10–15 m) submarine environment, and wave action probably interacted with the advancing lava front to form a lava delta. Lava flux was sufficiently high to produce well-developed, subcircular lava tubes, which lack evidence for thermal erosion. In some areas, lava ‘burrowed’ into the unconsolidated, water-saturated lava delta and sand pile to produce intrusive contacts. The upper columnar-jointed unit represents a ponded facies probably emplaced initially in water depths <5 m but whose top was subaerial.  相似文献   

19.
Miocene submarine basanite pillows, lava lobes, megapillows and sheet lavas in the Stanley Peninsula, northwestern Tasmania, Australia, are well-preserved in three dimensions. The pillows have ropy wrinkles, transverse wrinkles, symmetrical wrinkles, contraction cracks and three types of spreading cracks on their surfaces, and concentric and radial joints in the interior. The lava lobes have ropy wrinkles and contraction cracks on their surfaces. The megapillows are cylindrical with a smoothly curved upper surface and steep sides, and are characterized by distinct radial columnar joints in the interior. They are connected to pillows that propagate radially from its basal margin. The sheet lavas are tabular and have vertical columnar joints in the interior. The largest sheet lava shows a remarkable gradation from a lower 5-m-thick pillow facies to an upper massive facies. The pillows, lava lobes, megapillows and sheet lavas are inferred to have been emplaced completely below sea level but in a shallow marine environment. Their morphological features suggest that the pillows grew by episodic rupture of a near-solid crust and emergence of hot lava, whereas the lava lobes propagated by continuous stretching of the outer skin at the flow front. The megapillows and sheet lavas were master feeder channels by which molten lava was conveyed to the advancing pillows. The sheet lavas propagated by repeated processes of pillow formation and overriding by an upper massive part. Alternating pillow and massive facies commonly found in ocean-floor drill cores and exposed in cross-section in many subaqueous volcanic successions may have formed by propagation of pillows from the basal margins of advancing sheet lavas.  相似文献   

20.
We present precise geodetic and satellite observation-based estimations of the erupted volume and discharge rate of magma during the 2011 eruptions of Kirishima-Shinmoe-dake volcano, Japan. During these events, the type and intensity of eruption drastically changed within a week, with three major sub-Plinian eruptions on January 26 and 27, and a continuous lava extrusion from January 29 to 31. In response to each eruptive event, borehole-type tiltmeters detected deflation of a magma chamber caused by migration of magma to the surface. These measurements enabled us to estimate the geodetic volume change in the magma chamber caused by each eruptive event. Erupted volumes and discharge rates were constrained during lava extrusion using synthetic aperture radar satellite imaging of lava accumulation inside the summit crater. Combining the geodetic volume change and the volume of lava extrusion enabled the determination of the erupted volume and discharge rate during each sub-Plinian event. These precise estimates provide important information about magma storage conditions in magma chambers and eruption column dynamics, and indicate that the Shinmoe-dake eruptions occurred in a critical state between explosive and effusive eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号