首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earthquakes began to occur in Koyna region (India) soon after the filling of Koyna Dam in 1962. In the present study, three datasets 1964–1993, 1993–1995, and 1996–1997 are analyzed to study the b-value and fractal dimension. The b-value is calculated using the Gutenberg–Richter relationship and fractal dimension D corr. using correlation integral method. The estimated b-value and D corr. of this region before 1993 are found to be in good agreement with previously reported studies. In the subsequent years after 1995, the b-value shows an increase. The estimated b-values of this region are found within the limits of global average. Also, the pattern of spatial clustering of earthquakes show increase in clustering and migration along the three zones called North-East Zone, South-East Zone (SEZ), and Warna Seismic Zone. The earthquake events having depth ≤5 km are largely confined to SEZ. After 1993, the D corr. shows decrease, implying that earthquake activity gets clustered. This seismic clustering could be helpful for earthquake forecasting.  相似文献   

2.
On April 25, 2015, Nepal was struck by the MW7.8 Gorkha earthquake followed by an intense aftershock sequence. It was one of the most destructive earthquakes in the Himalayan arc, causing more than 8900 fatalities. In this study, we analyzed the dataset (429 events, magnitude of completeness (Mc) ≥ 4.2 local magnitude) of the first 45 days after the Gorkha earthquake to estimate the seismicity parameters b-value, D-value, and p-value. We used the maximum likelihood method to estimate the b-value and Omori-Utsu parameters, whereas the correlation integral method was applied to estimate the fractal dimension (D-value). The analysis was carried out using running and sliding window techniques. The lowest b-value (0.57 ± 0.04) and the highest D-value (1.65 ± 0.02) were computed at the time of the Gorkha earthquake, after which the b-value significantly increased to a maximum of 1.57. It again dropped to 0.93 at the time of the major aftershock on May 12, 2015. The D-value showed an initial quick drop and then decreased in a wavy pattern until the end of the study period, indicating the clustering and scattering of earthquakes in a fault region. The b-value contour map identified the eastern part of the study area as a high stress region (b = ~0.8), implying that the stress shifted to that region. The D-value contour map reveals that the seismogenic structure shifted from linear to planar in the region. The rate of aftershock decay (p = 0.86 ± 0.04) for a short period reflects that the level of stress decreased rapidly. This study helps to understand the level of stress and seismicity pattern of a region, which could be useful for aftershock studies.  相似文献   

3.
Multifractal analysis of earthquakes   总被引:5,自引:0,他引:5  
Multifractal properties of the epicenter and hypocenter distribution and also of the energy distribution of earthquakes are studied for California, Japan, and Greece. The calculatedD q-q curves (the generalized dimension) indicate that the earthquake process is multifractal or heterogeneous in the fractal dimension. Japanese earthquakes are the most heterogeneous and Californian earthquakes are the least. Since the earthquake process is multifractal, a single value of the so-called fractal dimension is not sufficient to characterize the earthquake process. Studies of multifractal models of earthquakes are recommended. Temporal changes of theD q-q curve are also obtained for Californian and Japanese earthquakes. TheD q-q curve shows two distinctly different types in each region; the gentle type and the steep type. The steeptype corresponds to a strongly heterogeneous multifractal, which appears during seismically active periods when large earthquakes occur.D q for smallq or negativeq is considerably more sensitive to the change in fractal structure of earthquakes thanD q forq2. We recommend use ofD q at smallq to detect the seismicity change in a local area.  相似文献   

4.
Recent seismicity in the northeast India and its adjoining region exhibits different earthquake mechanisms – predominantly thrust faulting on the eastern boundary, normal faulting in the upper Himalaya, and strike slip in the remaining areas. A homogenized catalogue in moment magnitude, M W, covering a period from 1906 to 2006 is derived from International Seismological Center (ISC) catalogue, and Global Centroid Moment Tensor (GCMT) database. Owing to significant and stable earthquake recordings as seen from 1964 onwards, the seismicity in the region is analyzed for the period with spatial distribution of magnitude of completeness m t, b value, a value, and correlation fractal dimension D C. The estimated value of m t is found to vary between 4.0 and 4.8. The a value is seen to vary from 4.47 to 8.59 while b value ranges from 0.61 to 1.36. Thrust zones are seen to exhibit predominantly lower b value distribution while strike-slip and normal faulting regimes are associated with moderate to higher b value distribution. D C is found to vary from 0.70 to 1.66. Although the correlation between spatial distribution of b value and D C is seen predominantly negative, positive correlations can also be observed in some parts of this territory. A major observation is the strikingly negative correlation with low b value in the eastern boundary thrust region implying a possible case of extending asperity. Incidentally, application of box counting method on fault segments of the study region indicates comparatively higher fractal dimension, D, suggesting an inclination towards a planar geometrical coverage in the 2D spatial extent. Finally, four broad seismic source zones are demarcated based on the estimated spatial seismicity patterns in collaboration with the underlying active fault networks. The present work appraises the seismicity scenario in fulfillment of a basic groundwork for seismic hazard assessment in this earthquake province of the country.  相似文献   

5.
解孟雨  孟令媛 《中国地震》2021,37(2):494-507
利用全国统一目录和流动台站目录,研究了四川盆地东南部长宁地区的地震活动特征和b值的空间分布特征。研究结果显示,长宁地区的地震活动在时间上呈现明显的分段特征,地震活动在2015年后明显增强;在空间上,长宁地区的地震活动主要集中在以28.3°N为界限的南、北2个地区,对于这2个区域的b值演化,计算结果显示出不同的分段特征。此外,研究了不同震中距下,长宁地区2018年兴文5.7级、2019年珙县5.3级和2019年长宁6.0级3次主要地震事件震前与震后的b值演化,结果表明统计范围会显著影响b值的变化特征,当计算范围为20km时,3次主震震前短期内均出现了低于背景b值90%的低b值异常,这表明在地震目录相对完备的情况下,利用低b值异常分析区域地震危险性,应采用较小范围的地震数据。  相似文献   

6.

Micro-aftershocks with magnitude range of 1.5?4 around the Wenchuan earthquake epicenter, the southern part of the Longmenshan fault zone, exhibit good frequency-magnitude linear relationships, thus enabling b-value analysis. The average b-value for micro-aftershocks of M1.5?4 from July to December of 2008 in our local study region is about 0.88, similar to the b-value for all aftershocks of M3.0?5.5 from May, 2008 to May, 2009 along the whole Longmenshan fault zone. The similarity between the local and regional b-values possibly indicates that the southern part of the Longmenshan fault zone has similar seismogenic environment to the whole Longmenshan fault zone. Alternatively, it may also imply that b-values derived from all events without consideration of structural variation can not discriminate local-scale tectonic information. The present study shows that the b-value for the Wenchuan earthquake micro-aftershocks varies with different regions. The b-value in southwest of the Yingxiu town is higher than that in the northeast of the Yingxiu town. The high b-value in the southwest part where the Wenchuan earthquake main shock hypocenter located indicates that the current stress around the hypocenter region is much lower than its surrounding area. The b-values are also dependent on depth. At shallow depths of < 5 km, the b-values are very small (~0.4), possibly being related to strong wave attenuation or strong heterogeneity in shallow layers with high content of porosity and fractures. At depths of ~5?11 km, where most aftershocks concentrated, the b-values become as high as ~0.9?1.0. At the depth below ~11 km, the b-values decrease with the depth increasing, being consistent with increasing tectonic homogeneity and increasing stress with depth.

  相似文献   

7.
The pattern of b-value of the frequency–magnitude relation, or mean magnitude, varies little in the Kaoiki-Hilea area of Hawaii, and the b-values are normal, with b=0.8 in the top 10 km and somewhat lower values below that depth. We interpret the Kaoiki-Hilea area as relatively stable, normal Hawaiian crust. In contrast, the b-values beneath Kilauea's South Flank are anomalously high (b=1.3–1.7) at depths between 4 and 8 km, with the highest values near the East Rift zone, but extending 5–8 km away from the rift. Also, the anomalously high b-values vary along strike, parallel to the rift zone. The highest b-values are observed near Hiiaka and Pauahi craters at the bend in the rift, the next highest are near Makaopuhi and also near Puu Kaliu. The mildest anomalies occur adjacent to the central section of the rift. The locations of the three major and two minor b-value anomalies correspond to places where shallow magma reservoirs have been proposed based on analyses of seismicity, geodetic data and differentiated lava chemistry. The existence of the magma reservoirs is also supported by magnetic anomalies, which may be areas of dike concentration, and self-potential anomalies, which are areas of thermal upwelling above a hot source. The simplest explanation of these anomalously high b-values is that they are due to the presence of active magma bodies beneath the East Rift zone at depths down to 8 km. In other volcanoes, anomalously high b-values correlate with volumes adjacent to active magma chambers. This supports a model of a magma body beneath the East Rift zone, which may widen and thin along strike, and which may reach 8 km depth and extend from Kilauea's summit to a distance of at least 40 km down rift. The anomalously high b-values at the center of the South Flank, several kilometers away from the rift, may be explained by unusually high pore pressure throughout the South Flank, or by anomalously strong heterogeneity due to extensive cracking, or by both phenomena. The major b-value anomalies are located SSE of their parent reservoirs, in the direction of motion of the flank, suggesting that magma reservoirs leave an imprint in the mobile flank. We hypothesize that the extensive cracking may have been acquired when the anomalous parts of the South Flank, now several kilometers distant from the rift zone, were generated at the rift zone near persistent reservoirs. Since their generation, these volumes may have moved seaward, away from the rift, but earthquakes occurring in them still use the preexisting complex crack distribution. Along the decollement plane at 10 km depth, the b-values are exceptionally low (b=0.5), suggesting faulting in a more homogeneous medium.  相似文献   

8.
Temporal changes of b-value, fractal (correlation) dimensions of epicenters (D e ) and occurrence time of earthquakes (D t ) and relations between these parameters were calculated to investigate precursory changes before 28 May 2004, Baladeh-Kojour earthquake (M w = 6.3) of Central Alborz, Iran. 2086 events with M N ≥ 1.7 were selected for our analyses. A wide range of variation was seen in these parameters: b-value ~ 0.6–1.11, D e ~ 0.97–1.64, and D t ~ 0.13–0.93. The results showed decreases in all fractal parameters several months before the main shock. This decrease, which might have arisen due to clusters of events occurred between 2002–2003, was followed by a systematic increase, corresponding to the increased level of low-magnitude seismicity. It seems that changes in fractal parameters may be precursors of Baladeh-Kojour earthquake which was caused by seismic activation and quiescence. Furthermore, a positive correlation between b-value and D e was detected before the main shock (D e = 0.87 + 0.7b) and during aftershock sequences (D e = 2b ± 0.09), which was further on changed to a negative one (D e = 2.56–1.32b).  相似文献   

9.
利用华北地区近44年地震资料,在区域地震序列完整性分析的基础上,用最小二乘法进行b值时间扫描计算,用最大似然法进行b值空间扫描计算。时间扫描中的b值为研究区内每个扫描窗口的平均b值,因此其变化幅度不大,基本保持在0.62~1.05之间。研究区b值空间分布范围基本维系在0.5~1.4,低b值区域为昌平—宝坻断裂段和唐山—迁安断裂段,变化范围为0.5~0.7,表明该区域地壳介质正处于相对高应力或闭锁状态,存在未来可能发生中强以上地震的潜在危险。  相似文献   

10.
For earthquakes (ML≥2.0) that occurred from January 2006 to October 2018 around the MS5.7 Xingwen earthquake occurred on 16 December 2018 in Xingwen, Sichuan province, China, we statistically investigated the correlation between the phase of Earth's rotation and the occurrence of earthquakes via Schuster's test to determine the signals that triggered earthquakes before the MS5.7 Xingwen event. The results were evaluated based on the P-value where a smaller P-value corresponded to a higher correlation between the occurrence of an earthquake and Earth's rotation. We investigated the spatial distribution of P-values in the region around the epicenter of the MS5.7 Xingwen event, and obtained a result exhibiting a extremely low-P-value region. The MS5.7 event occurred inside near the northern boundary of this region. Furthermore, we analyzed the temporal evolution of P-values for earthquakes that occurred within the extremely low-P-value region and found that some extremely low P-values (less that 0.1%), i.e., significant correlation, were calculated for earthquakes that occurred before the MS5.7 Xingwen earthquake. Among sixty-one earthquakes with the lowest P-value, occurred from May 2014 to April 2018, a vast majority of them occurred during the acceleration of Earth's rotation. The lower P-value obtained in this study reveals that the Xingwen source body probably was extremely unstable prior to the occurrence of the MS5.7 Xingwen earthquake.  相似文献   

11.
2016年新疆呼图壁6.2级地震前b值异常特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2009年以来中国地震台网中心地震编目资料,以2016年新疆呼图壁6.2级地震作为研究对象,采用最大似然法进行b值空间扫描计算,获取震前震中及其邻区地震b值的空间图像。研究结果显示,2016年呼图壁6.2级地震发生在震前显著低b值区域,该异常特征可能反映了地震孕育的应力积累过程,印证了b值的物理意义。  相似文献   

12.
The depth changes in the b-value and density of the number of earthquakes in different magnitude bins (M ≥ 1.8, M ≥ 3.0, M ≥ 3.5) are analyzed using highly accurate seismological observations carried out in 1955–1991 at the Garm prognostic area in Tadjikistan. It is found that the observed b-values are controlled by the variations in the proportion between weak and strong earthquakes. Two horizons with different patterns of the b-value are identified in the Earth’s crust above and below a depth of 15–16 km. The b-value in the upper and lower horizons is close to 0.8 and 1.2, respectively. The lower horizon is marked by almost complete absence of relatively strong earthquakes with M ≥ 3.0. The observed changes in the b-value with increasing depth could probably be due to the increase in the strength of crustal material caused by the growth in temperature and confining pressure in the depth interval from 0 to 15 km. The transitional interval between the upper and lower crustal horizons (~13–18 km), which is characterized by a sharp drop in seismic activity, can probably be associated with the zone of the phase transition of crustal material from an elastic brittle state to a plastic state, as suggested by some authors. Typically, the top of this zone hosts the hypocenters of the strongest earthquakes in a given territory. The correlation is established between the crustal areas with low b-values and the locations of the strongest earthquakes in the region. It is suggested that the three-dimensional mapping of the b-value can be helpful for estimating the location, depth, and maximal magnitude of the probable strong earthquakes in seismically active regions and can be used to assess seismic risks.  相似文献   

13.
—Statistical characteristics of seismicity represented by microearthquakes are examined for three regions in central Greece, in particular the fractal correlation dimension, D 2?, and traditional b values are examined in tandem as a function of time by using the moving window technique. The Patras region contains the complicated tectonics, extending to damaging historical earthquakes of the western Corinth Gulf and the Rio Graben, yielding D 2 values between 0.40 and 1.20 with b between 0.94 and 1.27 unusually, the temporal evolution between D 2 and b generates a positive correlation, although the variation is mostly in D 2?. When the whole evolution is divided into two stages then the positive correlations are even stronger than for the whole evolution. The views of Henderson and others might suggest a highly fractured, fluid-filled zone. The Pavliani region, with no known active fault, and the Volos region, containing the through-going Nea Ankhialos fault, yield D 2 values 0.33 to 0.79 with b 0.92 to 1.30 and D 2 0.82 to 1.56 withb 1.02 to 1.37, respectively. Temporal evolution between D 2 and b provides a typical negative correlation in both regions. Examination of gross seismicity (time window embracing the whole data set) in each region produces D 2 values for the Patras and Volos regions that are both larger than that for Pavliani; there are no obvious differences amongst the b values. This accords with the knowledge that Patras and Volos are in regions with very active seismotectonic features which generate repeated strong earthquakes exceeding 6M s ?. D 2 for both regions is fairly close to 1, the topological dimension of a line, consistent with seismicities on leading active fault zones or through-go ing faults. These values highlight the ability for microearthquakes to illuminate the character of their parent tectonic province. Resolution and hierarchy in these data from Greece are compared with these aspects elsewhere (Japan, Turkey, South America, USA) in the sense that their banding with respect to examined magnitude, areal extent and duration of observation period for respective data sets is examined in relation to the earthquake potential of the parent seismotectonic province. Evolutions are then categorised as being macroscopic, transitional or microscopic in character.  相似文献   

14.
Seismicity of the Earth (M ≥ 4.5) was compiled from NEIC, IRIS and ISC catalogues and used to compute b-value based on various time windows. It is found that continuous cyclic b-variations occur on both long and short time scales, the latter being of much higher value and sometimes in excess of 0.7 of the absolute b-value. These variations occur not only yearly or monthly, but also daily. Before the occurrence of large earthquakes, b-values start increasing with variable gradients that are affected by foreshocks. In some cases, the gradient is reduced to zero or to a negative value a few days before the earthquake occurrence. In general, calculated b-values attain maxima 1 day before large earthquakes and minima soon after their occurrence. Both linear regression and maximum likelihood methods give correlatable, but variable results. It is found that an expanding time window technique from a fixed starting point is more effective in the study of b-variations. The calculated b-variations for the whole Earth, its hemispheres, quadrants and the epicentral regions of some large earthquakes are of both local and regional character, which may indicate that in such cases, the geodynamic processes acting within a certain region have a much regional effect within the Earth. The b-variations have long been known to vary with a number of local and regional factors including tectonic stresses. The results reported here indicate that geotectonic stress remains the most significant factor that controls b-variations. It is found that for earthquakes with M w ≥ 7, an increase of about 0.20 in the b-value implies a stress increase that will result in an earthquake with a magnitude one unit higher.  相似文献   

15.
Seismicity data of northeast India, recorded between 1986 and 1999 by a local network, are analysed for estimation of b-values. Based on the obtained values, viz. low (b ≤ 0.5), moderate (0.5 < b ≤ 0.7) and high (b > 0.7), the study area is classified into different seismic-domains. An assessment of stress level is also carried out in identifying seismic-domains. Seismic activities, though mostly confined in some sectors, are presumably triggered by mutual interaction of the Shillong Plateau, Mikir Hills, Indo-Burman Ranges and the easternmost part of the Himalayas, and the contributions from deep-seated fractures cannot be ignored. The results resemble the seismic character of a foreland setting adjacent to a convergent margin. The b-values estimated for 240 square grids of dimension 0.6° × 0.6° over five seismic domains indicate wide variation. An analysis of cumulative seismic moment release (M O) in different layers also indicates an anomaly in reference to the total seismic-energy budget of the five zones. The lower b-value and higher M O recorded at relatively lower depth (~30 km) towards the southwest of the study area might be associated with upward bulging of a strong lithosphere. The bulging is perhaps regionally compensated by the downward flexing of the descending Indian lithosphere beneath the Upper Assam area; features unequivocally observed in any foreland setup. Towards the north and east of the study area, random variations of in both b-value and M O along the converging zone suggest a varied tectonic environment with active interaction between the tectonic elements in these areas.  相似文献   

16.
2017年8月8日青藏高原东缘四川九寨沟地区发生7.0级强震,依据前人研究结果分析九寨沟7.0级地震发震构造,并计算震前应力状态。结果显示:本次地震受到构造和历史强震的影响,是发生在历史强震引起的应力加载区域。另外,采用中国地震台网1990年以来的地震目录,在评估目录完整性的基础上,利用最大似然法计算得到2017年8月8日九寨沟7.0级地震前震源区及邻区地震b值空间图像。结果显示,九寨沟7.0级地震发生在四川北部地区显著低b值高应力异常区域内部(0.82b0.75)。所以,研究区域内外历史强震可能促进了九寨沟7.0级地震的发生。  相似文献   

17.
This study analyses the temporal clustering, spatial clustering, and statistics of the 2012–2013 Torreperogil-Sabiote (southern Spain) seismic swarm. During the swarm, more than 2200 events were located, mostly at depths of 2–5 km, with magnitude event up to mbLg 3.9 (Mw 3.7). On the basis of daily activity rate, three main temporal phases are identified and analysed. The analysis combines different seismological relationships to improve our understanding of the physical processes related to the swarm's occurrence. Each temporal phase is characterized by its cumulative seismic moment. Using several different approaches, we estimate a catalog completeness magnitude of mc≅ 1.5. The maximum likelihood b-value estimates for each swarm phase are 1.11 ± 0.09, 1.04 ± 0.04, and 0.90 ± 0.04, respectively. To test the hypothesis that a b-value decrease is a precursor to a large event, we study temporal variations in b-value using overlapping moving windows. A relationship can be inferred between change in b-value and the regime style of the rupture. b-values are indicators of the stress regime, and influence the size of ruptures. The fractal dimension D2 is used to perform spatial analysis. Cumulative gamma and beta functions are used to analyse the behaviour of inter-event distances during the earthquake sequence.  相似文献   

18.
Detecting tempo-spatial changes of crust stress associated with major earthquakes has implications for understanding earthquake seismogenic processes. We conducted a joint analysis of b-value and apparent stress in the source region before the March 11, 2011 MW9.0 Tohoku-Oki, Japan earthquake. Earthquakes that occurred between January 1, 2000 and March 8, 2011 were used to estimate b-values, while source parameters of events with magnitudes of Ms5.0–6.9 between January 1, 1997 and March 8, 2011 were used to calculate the apparent stresses. Our results show that the average b-value decreased steadily from 1.26 in 2003 to 0.99 before the Tohoku-Oki mainshock. This b-value decrease coincided with an increase in the apparent stress from 0.65 MPa to 1.64 MPa. Our results reveal a clear negative correlation between the decrease in b-value and increase in apparent stress, which lasted for approximately eight years prior to the 2011 mainshock. Additionally, spatial pattern results of the relative change in b-value show that the area associated with drastic b-value decreases (25% or greater) was concentrated near the 2011 mainshock epicenter. The joint analysis of b-value and apparent stress provides a promising method for detecting anomalies that could serve as potential indicators of large earthquakes.  相似文献   

19.
The research of the information dimension (D 1) in an active fault zone considers the contribution of each seismic event to information and reflects the characteristics of the temporal and spatial distributions of earthquakes from a new point of view, avoiding some short-comings of the research about the capacity dimension (D 0). The results of calculation show that the information dimension of the temporal distribution in Xianshuihe active fault zone before Luhuo large earthquake isD 1=0.1051. It is a consult creterion of large earthquakes in future in the fault zone. The information dimensions of the temporal distribution of the earthquakes in Anninghe active fault zone are respectivelyD 1(t N)=0.1363 (for the north section) andD 1(t S)=0.06710 (for the south section). The information dimensions of the spatial distribution are respectivelyD 1(K N)=1.053 (for the north section) andD 1(K S)=0.7758 (for the south section). The north section and the south section belong to two self-similar systems with different information dimensions respectively. The extent of the self-organization of seismic activity in the south section is higher than that in the north section. This is helpful for us to judge the major dangerous section in the key region of the seismic monitoring. The research about the information dimension of the temporal and the spatial distributions of earthquakes is significant for the exploration of active fault zones and seismic prediction. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 372–379, 1991. This paper is sponsored by the Chinese Joint Seismological Science Foundation. The English version is improved by Zhenwen An.  相似文献   

20.
The collision zone between the Arabian and Eurasian plates is one of the most seismically active regions. Northern Iraq represents the northeastern part of the Arabian plate that has a suture zone with the Turkish and Iranian plates called the Bitlis–Zagros suture zone. The orientations of the principal stress axes can be estimated by the formal stress inversion of focal mechanism solutions. The waveform moment tensor inversion method was used to derive a focal mechanism solution of 65 earthquakes with magnitudes range from 3.5 to 5.66 in the study area. From focal mechanism solutions, the direction of slip and the orientations of the moment stress axes (P, N, and T) on the causative fault surface during an earthquake were determined. The dataset of the moment stress axes have been used to infer the regional principal stress axes (σ 1, σ 2, and σ 3) by the formal stress inversion method. Two inversion methods, which are the new right dihedron and the rotational optimization methods, were used. The results show that six stress regime categories exist in the study area. However, the most common tectonic regimes are the strike-slip faulting (43.94 %), unspecified oblique faulting (27.27 %), and thrust faulting (13.64 %) regimes. In most cases, the strike-slip movement on the fault surfaces consists of left-lateral (sinistral) movement. The normal faulting is located in one small area and is due to a local tensional stress regime that develops in areas of strike-slip displacements as pull-apart basins. The directions of the horizontal stress axes show that the compressional stress regime at the Bitlis–Zagros suture zone has two directions. One is perpendicular to the suture zone near the Iraq–Iran border and the second is parallel in places as well as perpendicular in others to the suture zone near the Iraq–Turkey border. In addition, the principal stress axes in the Sinjar area near the Iraq–Syria border have a E–W direction. These results are compatible with the tectonic setting of the Arabian–Eurasian continental collision zone and the anticlockwise rotation of the Arabian plate that is evidently responsible for the strike-slip displacements on fault surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号