首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
1D inversion of DC resistivity data using a quality-based truncated SVD   总被引:1,自引:0,他引:1  
Many DC resistivity inversion schemes use a combination of standard iterative least-squares and truncated singular value decomposition (SVD) to optimize the solution to the inverse problem. However, until quite recently, the truncation was done arbitrarily or by a trial-and-error procedure, due to the lack of workable guidance criteria for discarding small singular values. In this paper we present an inversion scheme which adopts a truncation criterion based on the optimization of the total model variance. This consists of two terms: (i) the term associated with the variance of statistically significant principal components, i.e. the standard model estimate variance, and (ii) the term associated with statistically insignificant principal components of the solution, i.e. the variance of the bias term. As an initial model for the start of iterations, we use a multilayered homogeneous half-space whose layer thicknesses increase logarithmically with depth to take into account the decrease of the resolution of the DC resistivity technique with depth. The present inversion scheme has been tested on synthetic and field data. The results of the tests show that the procedure works well and the convergence process is stable even in the most complicated cases. The fact that the truncation level in the SVD is determined intrinsically in the course of inversion proves to be a major advantage over other inversion schemes where it is set by the user.  相似文献   

2.
作为全局非线性优化的新方法之一的遗传算法,近年来已从生物工程流行到大地电磁测深资料解释中.然而,大地电磁反演问题具有不适定性,解的非唯一性.通过结合求解不适定问题的Tikhonov正则化方法,本文采用实数编码遗传算法求解大地电磁二维反演问题.此算法在构建目标函数时引入正则化的思想,利用遗传算法求解最优化问题.常规的基于局部线性化的最优化反演方法易使解陷入局部极小值,而且严重的依赖初始模型的选择.与传统线性化的迭代反演方法相比,实数编码遗传算法能够克服传统方法的不足且能获得更好的反演结果.通过对大地电磁测深理论模型进行计算,结果表明:该算法具有收敛速度快、解的精度高和避免出现早熟等优点,可用于大地电磁资料解释.  相似文献   

3.
A method of approximate magnetotelluric sounding (MTS) data inversion is developed on the basis of the representation of the inverse operator by an artificial neural network in classes of geoelectric structures. A methodology of the neural network inversion of magnetotelluric data is proposed for a family of classes of geoelectric structures and the uncertainty of the inferred results is estimated. A neural network algorithm of MTS data inversion is tested using synthetic 2-D data.  相似文献   

4.
I investigated the two‐dimensional magnetotelluric data inversion algorithms in studying two significant aspects within a linearized inversion approach. The first one is the method of minimization and second one is the type of stabilizing functional used in parametric functionals. The results of two well‐known inversion algorithms, namely conjugate gradient and the least‐squares solution with singular value decomposition, were compared in terms of accuracy and CPU time. In addition, magnetotelluric data inversion with various stabilizers, such as L2‐norm, smoothing, minimum support, minimum gradient support and first‐order minimum entropy, were examined. A new inversion algorithm named least‐squares solution with singular value decomposition and conjugate gradient is suggested in seeing the outcomes of the comparisons carried out on least‐squares solutions with singular value decomposition and conjugate gradient algorithms subject to a variety of stabilizers. Inversion results of synthetic data showed that the newly suggested algorithm yields better results than those of the individual implementations of conjugate gradient and least‐squares solution with singular value decomposition algorithms. The suggested algorithm and the above‐mentioned algorithms inversion results for the field data collected along a line crossing the North Anatolian Fault zone were also compared each other and results are discussed.  相似文献   

5.
Resistivity monitoring surveys are used to detect temporal changes in the subsurface using repeated measurements over the same site. The positions of the electrodes are typically measured at the start of the survey program and possibly at occasional later times. In areas with unstable ground, such as landslide‐prone slopes, the positions of the electrodes can be displaced by ground movements. If this occurs at times when the positions of the electrodes are not directly measured, they have to be estimated. This can be done by interpolation or, as in recent developments, from the resistivity data using new inverse methods. The smoothness‐constrained least squares optimisation method can be modified to include the electrode positions as additional unknown parameters. The Jacobian matrices with the sensitivity of the apparent resistivity measurements to changes in the electrode positions are then required by the optimisation method. In this paper, a fast adjoint‐equation method is used to calculate the Jacobian matrices required by the least squares method to reduce the calculation time. In areas with large near‐surface resistivity contrasts, the inversion routine sometimes cannot accurately distinguish between electrode displacements and subsurface resistivity variations. To overcome this problem, the model for the initial time‐lapse dataset (with accurately known electrode positions) is used as the starting model for the inversion of the later‐time dataset. This greatly improves the accuracy of the estimated electrode positions compared to the use of a homogeneous half‐space starting model. In areas where the movement of the electrodes is expected to occur in a fixed direction, the method of transformations can be used to include this information as an additional constraint in the optimisation routine.  相似文献   

6.
Electromagnetic methods are routinely applied to image the subsurface from shallow to regional structures. Individual electromagnetic methods differ in their sensitivities towards resistive and conductive structures and in their exploration depths. If a good balance between different electromagnetic data can be be found, joint 3D inversion of multiple electromagnetic datasets can result in significantly better resolution of subsurface structures than the individual inversions. We present a weighting algorithm to combine magnetotelluric, controlled source electromagnetic, and geoelectric data. Magnetotelluric data are generally more sensitive to regional conductive structures, whereas controlled source electromagnetic and geoelectric data are better suited to recover more shallow and resistive structures. Our new scheme is based on weighting individual components of the total data gradient after each model update. Norms of individual data residuals are used to assess how much of the total data gradient must be assigned to each method to achieve a balanced contribution of all datasets for the joint inverse model. Synthetic inversion tests demonstrate advantages of joint inversion in general and also the influence of the weighting. In our tests, the controlled source electromagnetic data gradients are larger than those of the magnetotelluric and geoelectric datasets. Consequently, direct joint inversion of controlled source electromagnetic, magnetotelluric, and geoelectric data results in models that are mostly dominated by structures required by the controlled source electromagnetic data. Applying the new adaptive weighting scheme results in an inversion model that fits the data better and resembles more the original model. We used the modular system electromagnetic as a framework to implement the new joint inversion and briefly describe the new modules for forward modelling and their interfaces to the modular system electromagnetic package.  相似文献   

7.
Sharp boundary inversion of 2D magnetotelluric data   总被引:6,自引:0,他引:6  
We consider 2D earth models consisting of laterally variable layers. Boundaries between layers are described by their depths at a set of nodes and interpolated laterally between nodes. Conductivity within each layer is described by values at a set of nodes fixed within each layer, and is interpolated laterally within each layer. Within the set of possible models of this sort, we iteratively invert magnetotelluric data for models minimizing the lateral roughness of the layer boundaries, and the lateral roughness of conductivities within layers, for a given level of data misfit. This stabilizes the inverse problem and avoids superfluous detail. This approach allows the determination of boundary positions between geological units with sharp discontinuities in properties across boundaries, while sharing the stability features of recent smooth conductivity distribution inversions.
We compare sharp boundary inversion results with smooth conductivity distribution inversion results on a numerical example, and on inversion of field data from the Columbia River flood basalts of Washington State. In the synthetic example, where true positions and resistivities are known, sharp boundary inversion results determine both layer boundary locations and layer resistivities accurately. In inversion of Columbia flood basalt data, sharp boundary inversion recovers a model with substantially less internal variation within units, and less ambiguity in both the depth to base of the basalts and depth to resistive basement.  相似文献   

8.
大地电磁三维反演方法综述   总被引:20,自引:7,他引:13       下载免费PDF全文
大地电磁测深(MT)资料的三维正、反演问题,已成为国际地球内部电磁感应领域研究的前沿课题.文中从算法思想方面简要地介绍了当前国内外MT三维反演的几种主要方法,探讨了今后MT三维反演研究的方向.  相似文献   

9.
The WSINV3DMT code makes the implementation of 3D inversion of magnetotelluric data feasible using a single PC. Audio‐magnetotelluric data were collected along two profiles in a Cu‐Ni mining area in Xinjiang, China, where the apparent resistivity and phase curves, the phase tensors and the magnetic induction vectors indicate a complex 3D conductivity structure. 3D inversions were carried out to reveal the electrical structure of the area. The final 3D model is selected from the inversion results using different initial Lagrange values and steps. The relatively low root‐mean‐square (rms) misfit and model norm indicate a reliable electrical model. The final model includes four types of low resistivity areas, the first ones coincide with the known location of an orebody and further forward modelling indicates that they are not in full connectivity to form a low resistivity zone. The second ones are not controlled by magnetotelluric sites and embody little information of the observed data, they are considered as tedious structures. The third one is near to the regional Kangguer fault and should be treated carefully considering the effect of the fault. The last ones are isolated and existing at a limited level as the first ones, they should be paid more attention to.  相似文献   

10.
基于逆算子估计的AVO反演方法研究   总被引:1,自引:1,他引:0       下载免费PDF全文
传统反演算法以优化算法为主,而基于逆算子估计的AVO反演算法则利用了直接求逆的思路.算法的关键在于寻找存在逆函数的子域,进而可以在子域内直接求逆,这种解决反问题的思路不同于一般的优化类算法所采用的直接搜索解的方式,具有更高的效率.AVO反演利用了振幅随着偏移距的变化特征,反演的精度受到地震资料质量的影响,通过加入L1范数约束以及合理的初始模型有助于提高反演的稳定性以及准确度.模型测算和实际应用表明,基于逆算子估计的AVO反演方法具有较高的精确程度和可靠性.  相似文献   

11.
大地电磁自适应正则化反演算法   总被引:36,自引:11,他引:36       下载免费PDF全文
针对大地电磁正则化反演中正则化因子的选取困难问题提出了自适应正则化反演算法(Adaptive Regularized Inversion Algorithm, ARIA). 在该算法中, ①提出了一种新的数据方差处理方法:数据方差规范化,使得数据方差的大小只对数据的拟合发生影响,不对数据目标函数和模型约束目标函数的权重产生影响,从而减少了正则化因子取值的影响因素;②提出了粗糙度核矩阵的概念,并给出了由基本结构插值基函数计算粗糙度核矩阵的公式,使得模型目标函数的构建更为简便、直接;③根据数据目标函数、模型约束目标函数和正则化因子之间的关系,提出了两种正则化因子自适应调节方法. 本文详细阐述了最平缓模型约束下的大地电磁一维连续介质反演的ARIA实现,以几个算例的分析比较来说明ARIA的有效性.  相似文献   

12.

It is preferable to use the three-dimensional (3D) magnetotelluric inversion, which provides volumetric geoelectric models, to handle the array input data. However, the soundings are frequently conducted on the single profiles or on the profiles that are considerably spaced apart from each other. We explore the possibilities of the 3D inversion of such data by the example of a three-layer model containing three local inhomogeneities. We previously showed that the simple processing of the data and their 1D or 2D inversion enable reconstructing the background cross section and locating all the three inhomogeneities. In the present paper, we use this information for constructing several versions of the starting model and carrying out the smoothing 3D inversion of the data. The experiments show that if the background cross section is incorporated into the starting model, the final model provided by the inversion closely reproduces the real distribution of all geoelectric parameters. At the same time, if the starting model that hosts the inhomogeneities has the form of a homogeneous half-space, the inversion is not able to reconstruct an adequate final model.

  相似文献   

13.
It is preferable to use the three-dimensional (3D) magnetotelluric inversion, which provides volumetric geoelectric models, to handle the array input data. However, the soundings are frequently conducted on the single profiles or on the profiles that are considerably spaced apart from each other. We explore the possibilities of the 3D inversion of such data by the example of a three-layer model containing three local inhomogeneities. We previously showed that the simple processing of the data and their 1D or 2D inversion enable reconstructing the background cross section and locating all the three inhomogeneities. In the present paper, we use this information for constructing several versions of the starting model and carrying out the smoothing 3D inversion of the data. The experiments show that if the background cross section is incorporated into the starting model, the final model provided by the inversion closely reproduces the real distribution of all geoelectric parameters. At the same time, if the starting model that hosts the inhomogeneities has the form of a homogeneous half-space, the inversion is not able to reconstruct an adequate final model.  相似文献   

14.
大地电磁法三维共轭梯度反演研究   总被引:12,自引:4,他引:8  
Based on the analysis of the conjugate gradient algorithm, we implement a threedimensional (3D) conjugate gradient inversion algorithm with magnetotelluric impedance data. During the inversion process, the 3D conjugate gradient inversion algorithm doesn' t need to compute and store the Jacobian matrix but directly updates the model from the computation of the Jacobian matrix. Requiring only one forward and four pseudo-forward modeling applications per frequency to produce the model update at each iteration, this algorithm efficiently reduces the computation of the inversion. From a trial inversion with synthetic magnetotelluric data, the validity and stability of the 3D conjugate gradient inversion algorithm is verified.  相似文献   

15.
In the traditional inversion of the Rayleigh dispersion curve, layer thickness, which is the second most sensitive parameter of modelling the Rayleigh dispersion curve, is usually assumed as correct and is used as fixed a priori information. Because the knowledge of the layer thickness is typically not precise, the use of such a priori information may result in the traditional Rayleigh dispersion curve inversions getting trapped in some local minima and may show results that are far from the real solution. In this study, we try to avoid this issue by using a joint inversion of the Rayleigh dispersion curve data with vertical electric sounding data, where we use the common‐layer thickness to couple the two methods. The key idea of the proposed joint inversion scheme is to combine methods in one joint Jacobian matrix and to invert for layer S‐wave velocity, resistivity, and layer thickness as an additional parameter, in contrast with a traditional Rayleigh dispersion curve inversion. The proposed joint inversion approach is tested with noise‐free and Gaussian noise data on six characteristic, synthetic sub‐surface models: a model with a typical dispersion; a low‐velocity, half‐space model; a model with particularly stiff and soft layers, respectively; and a model reproduced from the stiff and soft layers for different layer‐resistivity propagation. In the joint inversion process, the non‐linear damped least squares method is used together with the singular value decomposition approach to find a proper damping value for each iteration. The proposed joint inversion scheme tests many damping values, and it chooses the one that best approximates the observed data in the current iteration. The quality of the joint inversion is checked with the relative distance measure. In addition, a sensitivity analysis is performed for the typical dispersive sub‐surface model to illustrate the benefits of the proposed joint scheme. The results of synthetic models revealed that the combination of the Rayleigh dispersion curve and vertical electric sounding methods in a joint scheme allows to provide reliable sub‐surface models even in complex and challenging situations and without using any a priori information.  相似文献   

16.
Artificial neural networks were used to implement an automatic inversion of frequency‐domain airborne electromagnetic (AEM) data that do not require a priori information about the survey area. Two classes of model, i.e. homogeneous half‐space models and horizontally layered half‐space models with two layers, are used in this 1D inversion, and for each data point the selection of the class of 1D model is performed prior to the inversion, also using an artificial neural network. The proposed inversion method was tested in a survey area situated in Austria, northwest of Vienna in the Bohemian Massif. The results of the inversion were compared with the geological setting, logging results, and seismic and gravimetric measurements. This comparison shows a good correlation between the AEM models and the known geological and geophysical data.  相似文献   

17.
A simple numerical inversion scheme for estimatingn-layer model parameters from observed geoelectrical resistivity data can be used in either the space or wavenumber domain. The technique utilizes Madden's Transmission Line Analogy to compute the resistivity transforms and linear filter theory to accomplish the excursions between the space and wavenumber domains. The inversion is effected by an iterative refinement scheme employing the stochastic inverse which is approximate to the generalized inverse. No singular decomposition analysis is required and the scheme is stable under ill conditions. The inversion scheme not only gives the desired estimates; it exposes redundant parameters and irrelevant data and is easily programmed on a desk-top mini computer. Examples of inverse modeling with hypothetical and field data are discussed.  相似文献   

18.
Hopfield neural networks are massive parallel automata that support specific models and are adept in solving optimization problems. They suffer from a ‘rough’ solution space and convergence properties that are highly dependent on the starting model or prior. These detractions may be overcome by introducing regularization into the network in the form of local feedback smoothing. Application of regularized Hopfield networks to over 50 optimization test cases has yielded successful results, even with uniform (minimal information) priors. In particular, the non-linear, one- and two-dimensional magnetotelluric inverse problems have been solved by means of these regularized networks. The solutions compare favourably with those produced by other methods. Such regularized networks, with either hardware or programmed, parallel-computer implementation, can be extended to the problem of three-dimensional magnetotelluric inversion. Because neural networks are natural analog-to-digital converters, it is predicted that they will be the basic building blocks of future magnetotelluric instrumentation.  相似文献   

19.
基于子空间的二维大地电磁量子遗传反演法研究   总被引:1,自引:1,他引:0       下载免费PDF全文
量子遗传算法作为一种高效的优化算法,仍存在容易陷入局部极值的缺点.为提高算法的高效性,并探讨将算法应用于大地电磁二维反演的可行性和有效性,本文对算法进行了改进,并通过一维两层D型和四层HK型模型数值试验验证了改进的有效性.然后将改进后的算法引入二维大地电磁反演,在引入滑动子空间思想,同时只考虑最简化反演条件的前提下,对...  相似文献   

20.
The seismic reflection method provides high-resolution data that are especially useful for discovering mineral deposits under deep cover. A hindrance to the wider adoption of the seismic reflection method in mineral exploration is that the data are often interpreted differently and independently of other geophysical data unless common earth models are used to link the methods during geological interpretation. Model-based inversion of post-stack seismic data allows rock units with common petrophysical properties to be identified and permits increased bandwidth to enhance the spatial resolution of the acoustic-impedance model. However, as seismic reflection data are naturally bandlimited, any inversion scheme depends upon an initial model, and must deal with non-unique solutions for the inversion. Both issues can be largely overcome by using constraints and integrating prior information. We exploit the abilities of fuzzy c-means clustering to constrain and to include prior information in the inversion. The use of a clustering constraint for petrophysical values pushes the inversion process to select models that are primarily composed of several discrete rock units and the fuzzy c-means algorithm allows some properties to overlap by varying degrees. Imposing the fuzzy clustering techniques in the inversion process allows solutions that are similar to the natural geologic patterns that often have a few rock units represented by distinct combinations of petrophysical characteristics. Our tests on synthetic models, with clear and distinct boundaries, show that our methodology effectively recovers the true model. Accurate model recovery can be obtained even when the data are highly contaminated by random noise, where the initial model is homogeneous, or there is minimal prior petrophysical information available. We demonstrate the abilities of fuzzy c-means clustering to constrain and to include prior information in the acoustic-impedance inversion of a challenging magnetotelluric/seismic data set from the Carlin Gold District, USA. Using fuzzy c-means guided inversion of magnetotelluric data to create a starting model for acoustic-impedance proved important in obtaining the best result. Our inversion results correlate with borehole data and provided a better basis for geological interpretation than the seismic reflection images alone. Low values of the acoustic impedance in the basement rocks were shown to be prospective by geochemical analysis of rock cores, as would be predicted for later gold mineralization in weak, decalcified rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号