首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
由GPS观测结果推断中国大陆活动构造边界   总被引:5,自引:2,他引:5       下载免费PDF全文
利用“中国地壳运动观测网络”基本网1998年和2000年两期观测数据,得到分布在全国各构造块体上的79个GPS观测站速度场,对中国大陆主要活动构造块体间的相对运动显著性进行了分析和检验. 分析结果表明,西部活动构造块体的边界有较明显的相对运动,而东部运动不明显. 根据分析得到的活动边界,将中国大陆归并为11个活动块体,逐一计算了这些块体边界的活动量大小,确定了它们最新活动的方式.  相似文献   

2.
中国大陆现今地壳水平运动   总被引:27,自引:3,他引:24       下载免费PDF全文
黄立人  王敏 《地震学报》2000,22(3):257-262
在重新仔细处理了1994和1996年中国大陆地壳运动监测网两次GPS测量资料的基础上,采用较为完善的块体相对运动和块体内变形叠加的变形模型和相应的分析方法,研究了中国大陆现今地壳运动的运动学特征,并定量计算和比较了主要活动构造块体边界带的活动性质和强度,得到了一些新的认识.   相似文献   

3.
强震的孕育、发生涉及大尺度的地壳运动和构造形变的分布.中国大陆西部现今构造形变强烈,一些强烈活动的深大断裂的分布,把地壳分割成了若干活动地块.GPS观测获得的大范围的水平运动速度场分布具有较好的空间有序性和协调性.大区域水平相对运动和变形的协调与平衡,主要是通过一些大的断裂带(活动地块的边界带)的剧烈运动和变形来调整实现的.大区域的继承性构造运动决定了这些大的活动断裂带的相对运动与变形的性质及其空间分布趋势.强震前局部区域的相对运动和变形的异常是与大区域的地壳运动和整体变形相联系的.强震活动引起的调整总体上是维护大区域地壳运动和变形的协调与平衡的趋势.研究大断裂带构造变形的趋势背景和识别异常区段,是预测未来强震地点的重要途径.  相似文献   

4.
利用GPS观测结果对我国地壳水平形变强度的分析   总被引:7,自引:2,他引:5  
顾国华  符养  王武星 《地震》2004,24(2):1-6
介绍利用中国地壳运动观测网络区域网(包括基本网与基准网)1999年与2001年2期GPS观测所获得的中国大陆地壳水平位移速率结果, 研究块体的划分、 块体位移与块体变形, 提出了用位移(速率)离散度分析块体或局部水平变形强度的方法, 分析了中国大陆现今地壳运动的基本特征及2001年11月14日昆仑山口西8.1级大地震前的地壳水平运动。  相似文献   

5.
介绍利用中国地壳运动观测网络区域网 (包括基本网与基准网 ) 1 999年与 2 0 0 1年两期GPS观测所获得的中国大陆地壳水平运动信息 .本文的主要特点是 :以位于东部的一组稳定点为基准 ,得到 1 999~ 2 0 0 1年区域网各观测站水平位移速率 .根据由此获得的我国大陆目前最为详细的地壳水平运动图象 ,研究了块体的划分、块体位移与块体变形 ,提出了分析块体水平变形强度的方法 ,分析了中国大陆现今地壳运动的基本特征及 2 0 0 1年 1 1月 1 4日昆仑山口西M8.1大地震前的地壳水平运动 .  相似文献   

6.
强震孕育和发生与较大空间尺度和时空演变的地壳运动,尤其是活动块体及其边界带的构造变形密切相关.Matsu'ura负位错模型认为受现今地壳运动驱动下的各活动地块间的相对运动在地块边界处有可能受到部分阻碍,从而导致应力应变积聚.若视块体边界区域的地表位移为刚性块体的(平移)运动减去边界上部(由若干断层段构成,每一断层段用弹性半空间的单一矩形位错模型模拟)对块体相对运动的部分锁定在地表产生的位移.则利用地表位移观测可将区域深部的多个块体与其边界断层联系起来,其通过反演确定的块体边界断层带的相对闭锁区,对地震预报很有意义.而实际存在的地壳变形还应包含块体本身的变形.本文研究建立一种块体弹性变形及其边界负位错部分锁定的水平形变复合作用模型,即增加块体应变参量.经比较研究,此模型较原Matsu'ura负位错模型及笔者以往所作的对模型的初步改进(增加块体旋转参量)更符合地壳运动实际,拟合效果大为改善;进而求取该复合模型形变应变场的时空演化图像,并借助年均应力降(主要反映剪应力强度)与年均地震矩(反映块体边界断层段的能量积累速率)度量断层锁定能量强度,其图像表现力和时空演变定量化程度大幅提高.  相似文献   

7.
中国大陆西部地区现今的块体运动   总被引:11,自引:1,他引:10  
根据中国地壳运动GPS监测网1992 ̄1996年3次复测结果,分析了我国大陆西部地区现今块体运动的基本特征,结果表明:印度板块向北推挤是我国西部块体褶皱运动和变形的根源;由於内部次级断块的边界条件和受力方式不同,块体边界和内部构造形变亦具有明显的差异。块体运动主要特点表现为:(1)喜马拉雅向南弯曲的弧形边界东西两端,印度板块推挤运动方向不同,导致了弧前方的亚板块和构造块体的运动方向呈扇形散开;(2  相似文献   

8.
用速度场得到的华北地区活动块体及变形   总被引:6,自引:1,他引:6       下载免费PDF全文
利用1992~2001年华北地区多次GPS测量得到的该地区144个测站的水平运动速率和它们的误差估计,研究了该地区的水平形变,确定了华北现今主要活动地块的运动、整体变形、局部变形和边界带的活动强度和方式,并据此估计了强震危险性.在研究中水平位移观测值被分解成3部分位移的叠加,即第一部分是整个华北地区跟随欧亚板块的运动,这一部分可由NUVAL-IA模型确定;第二部分是研究区内各次级构造块体的相对运动和变形,它可以由本文推广的QUAD方法所确定一组点的位移观测值确定;第三部分是次级块体内的局部变形和误差,这一部分的变形可以用块体的非均匀应变来描述.文中详细介绍了方法和结果.   相似文献   

9.
依据GPS数据建立中国大陆板内块体现时运动模型的初步研究   总被引:48,自引:8,他引:40  
周硕愚  丁国瑜 《地震学报》1998,20(4):347-355
中国大陆被认为是研究大陆地壳运动和动力学的最理想地区.过去基于地面观测技术,很难对时间尺度为数年的大空间范围的陆内块体运动作定量研究.本文根据中国国家攀登计划现代地壳运动和地球动力学1994~1996年GPS全国复测数据,提出了一种完全基于实测资料,通过卡尔丹角计算块体间现时运动欧拉矢量的理沦方法.尝试性地初步建立了刻划中国大陆西藏、川滇、甘青、新疆、华南、华北和黑龙江等7个主要块体现时运动模型PBMC-1(present-time blocks movement model on the Chinese continent),首次在数年时间尺度内给出了中国大陆块体相对运动的点位速度场及边界带运动.模型结果表明:各块体的运动速率由南向北、由西向东逐次减少;运动方向由北北东逐步转向东以致东南和东东南.印度板块的碰撞对中国大陆内部诸块体运动起主导作用;而诸块体运动又决定着块体边界带————断裂带的活动方式与速率.模型给出的数年尺度的现时运动,总体上与地质学给出的百万年以来的平均状态相似,与地球物理学和天文学观测结果也较符合.GPS等空间测地结果已初步具备揭示正在进行中的地壳运动的能力.   相似文献   

10.
中国大陆现今地壳运动研究   总被引:17,自引:0,他引:17       下载免费PDF全文
王琪 《地震学报》2003,25(5):541-547
GPS结果十分清晰地刻画出中国大陆地区块体运动及内部变形特征,提供了认识印度欧亚碰撞引起的活动构造的新视角.本文回顾了4年来中国学者在利用GPS研究现今地壳运动方面所取得的成就,以及在利用InSAR技术研究强震破裂方面的进展情况.这些研究成果,标志着中国大陆构造变形的定量化研究进入了一个新阶段.   相似文献   

11.
划分大陆活动地块的重要标志之一是它们在地壳结构间的差异。大陆不同地块具有不同的地壳结构特征。这些结构和构造上的不同反映了它们在地壳内部的变形特征和动力过程的差异。文中利用深地震宽角反射 /折射剖面的结果 ,讨论了青藏高原东北缘东昆仑巴颜喀拉地块、鄂尔多斯地块和华北地块唐山震区地壳结构的差异。它们分别是变形强烈的活动地块、内部变形小相对稳定的地块和现代发生过强震的活动地块。在地壳结构上它们之间的差别是明显的。这些差异表现在地壳的分层性质、上地壳和下地壳的结构、地壳结构的不均匀尺度、壳 /幔分界的性质、壳内低速层的分布、地壳界面、特别是莫霍面的构造形态等方面  相似文献   

12.
中国大陆西部及周边地区地震活动特征的研究   总被引:2,自引:1,他引:2       下载免费PDF全文
探讨了中国周缘板块的联合作用对中国大陆地震的控制和影响,进一步研究了中国大陆西部及周边地区的地震活动特征。结果发现,该区域的地震活动除了有高潮和低潮的轮回特征外,还有相互消长的关系,并且地震相互消长有一个特定的比例。这一特点,对于中国大陆强震活动主体区的预测,尤其是对地震高潮期的结束时间提供了一个判据。  相似文献   

13.
In order to study the present crustal movement and geodynamics in China‘s continent, a countrywide GPS monitoring network consisting of 22 stations was set up evenly on major tectonic blocks in China‘s continent in the early 1990s. Three-phase observations using the network were carried out in 1992, 1994, and 1996, respectively. In this paper, the data processing and accuracy of the three-phase observations are examined and the basic characteristics of present block movement in China‘s continent are analyzed based on the data of three-phase repeated observations. The study result indicates that the accuracy of data obtained in three-phase observations on the GPS network reaches 10-8 ~ 10-9, which is adequate to the need of monitoring of crustal movement. A model for block movement in China‘s continent constructed based on the result of the three-phase observations has effectively tested the results of geological and geophysical studies. In global framework, China‘s continent as a whole shows its clear eastward motion and its regional movement relative to Siberian block is characterized by that the western China is mainly affected by northward subduction and pushing of Indian Plate. Qinghai-Xizang Plateau shows clear eastward lateral slip simultaneously with longitudinal compression. It is more favorable to the escape model for the continent. Block movement of eastern China is under the combined effect of Indian, Pacific,and Philippine plates, resulting in northeastern and eastern motions of eastern China up to southeastern coastal region where the effect of Philippine Plate strengthens.  相似文献   

14.
荆燕  任金卫 《地震地质》2004,26(1):71-90
活动构造是现今大陆地壳变形的重要反映。文中对发育于中国大陆及其邻区的活断层资料进行了系统的收集和分析整理 ,并结合活断层定量研究对主要活断层做出了较为粗略的分类。在此基础上 ,借助改进的Haines方法 (即双三次样条函数 ) ,根据中国大陆及其邻区的主要活断层资料 ,推算得出将地壳变形看作连续变形情况下的中国大陆现今地壳变形的应变率场和速度场模型。模型与现今GPS观测结果可以较好地吻合。文中还针对模型计算结果对中国大陆各区的运动矢量变化特征进行了分析 ,并通过与GPS观测结果的比较 ,定量估算出次级断裂在地壳变形中所产生的影响  相似文献   

15.
Chinese scientists proposed that large earthquakes that occurred in mainland China are controlled by the movement and deformation of active tectonic blocks. This scientific hypothesis explains zoned phenomenon of seismicity in space. The active tectonic blocks are intense active terranes formed in late Cenozoic and late Quaternary, and the tectonic activity of block boundaries is the intensest. Global Navigation Satellite System(GNSS)has advantages of high spatio-temporal resolution, broad coverage, and high accuracy, and is utilized to monitor contemporary crustal deformation. High accuracy and resolution of GNSS velocity field within mainland China and vicinities provided by previous studies clearly demonstrate that different active tectonic blocks behave as different patterns of movement and deformation, and block interaction boundaries have intense tectonic deformation. The paper firstly introduces the GPS networks operated by the Crustal Movement Observation Network of China(CMONOC)since 1999, and GNSS data processing methods, including GAMIT, BERNESE and GIPSY/OASIS, and discusses the advantages of using South China block as a regional reference frame for GNSS velocity field, then proposes three strategies of block division, F-test, quasi-accurate detection(QUAD), and clustering analysis. Furthermore, we introduce rigid and non-rigid block motions. Rigid block motion can be denoted by translation and rotation, while non-rigid block motion can be described by rigid motion and internal strain deformation. Internal strain deformation can be divided into uniform and linear strains. We also review the usage of F-test to distinguish whether the block acts as rigid deformation or not. In addition, combining with recent GNSS velocity results, we elaborate the characteristics of present movement of rigid block, such as the South China, Tarim, Ordos, Alashan, and Northeast China, and that of non-rigid block, such as the Tibetan plateau, Tian Shan, and North China plain. Especially, the Tibetan plateau and Tian Shan seem to deform continuously with significant internal deformation. In order to enrich and perfect the active tectonic block hypothesis, we should carefully design dense GNSS networks in inner blocks and block boundaries, optimize utilizing other space geodesy technologies such as InSAR, and strengthen combining study of geodesy, seismogeology and geophysics. Through systematic summary, this paper is very useful to employing GNSS to investigate characteristics of block movement and dynamics of large earthquakes happening in block interaction boundaries.  相似文献   

16.
We obtain the preliminary result of crustal deformation velocity field for the Chinese continent by analyzing GPS data from the Crustal Motion Observation Network of China (CMONOC), particularly the data from the regional networks of CMONOC observed in 1999 and 2001. We delineate 9 technically active blocks and 2 broadly distributed deformation zones out of a dense GPS velocity field, and derive block motion Euler poles for the blocks and their relative motion rates. Our result reveals that there are 3 categories of deformation patterns in the Chinese continent. The first category, associated with the interior of the Tibetan Plateau and the Tianshan orogenic belt, shows broadly distributed deformation within the regions. The third category, associated with the Tarim Basin and the region east of the north-south seismic belt of China, shows block-like motion, with deformation accommodated along the block boundaries only. The second category, mainly associated with the borderland of the Tibetan Plateau, such as the Qaidam, Qilian, Xining (in eastern Qinghai), and the Diamond-shaped (in western Sichuan and Yunnan) blocks, has the deformation pattern between the first and the third, i.e. these regions appear to deform block-like, but with smaller sizes and less strength for the blocks. Based on the analysis of the lithospheric structures and the deformation patterns of the regions above, we come to the inference that the deformation modes of the Chinese continental crust are mainly controlled by the crustal structure. The crust of the eastern China and the Tarim Basin is mechanically strong, and its deformation takes the form of relative motion between rigid blocks. On the other hand, the northward indentation of the Indian plate into the Asia continent has created the uplift of the Tibetan Plateau and the Tianshan Mountains, thickened their crust, and raised the temperature in the crust. The lower crust thus has become ductile, evidenced in low seismic velocity and high electric conductivity observed. The brittle part of the crust, driven by the visco-plastic flow of the lower crust, deforms extensively at all scales. The regions of the second category located at the borderland of the Tibetan Plateau are at the transition zone between the regions of the first and the third categories in terms of the crustal structure. Driven by the lateral boundary forces, their deformation style is also between the two, in the form of block motion and deformation with smaller blocks and less internal strength.  相似文献   

17.
张东宁  许忠淮 《地震》1999,19(1):26-32
以现代构造应力场和地壳运动的观测结果为约束条件,利用有限元方法计算了中国大陆地壳应变能密度年变化率,三维有限元模型采用粘弹性本构关系,包含了中国大陆主要活动断裂带,在青藏高原考虑了因高海拔地势蓄集的附加重力势能和地壳山根浮力作用。  相似文献   

18.
Based on velocity data of 933 GPS sites and using the methods of Ordinary Kriging interpolation and shape function derivation, this study has obtained the strain rate field of continental China in the spherical coordinates. In comparison with previous research results, it is found that such a strain rate field can be described by both the continuous deformation and block motions in the continent. The Tibetan Plateau and Tianshan region are characterized by continuous deformation which is distributed across the whole area. Within the blocks of South China, Tarim, Ordos, and Northeast China, little crustal deformation and deformation occurs primarily on the faults along their boundaries, which can be explained by the model of block motion. In other regions, such as the Yinshan-Yanshan block, North China block, and East Shandong-Yellow Sea, deformation patterns can be explained by both models. Besides, from southwest to northeast of continental China, there are three remarkable extensional zones of NW trending. These results imply that the NNE directed push of the India plate is the primary driving force accounting for the internal deformation of continental China. It produces the uplift, hori-zontal shortening and vertical thickening of the Tibetan Plateau as well as radiation-like material extru-sion. Of these extruded materials, one part accommodates the eastward "escape" of other blocks, generating convergence and compression of western China and widespread extension and local com-plicated deformation in eastern China under the joint action of the surrounding settings. The other part opens a corridor between the South China block and Tibetan Plateau, flowing toward southeast to the Myanmar range arc and filling the gap there which is produced by back-arc extension due to plate subduction.  相似文献   

19.
We obtain the preliminary result of crustal deformation velocity field for the Chinese con-tinent by analyzing GPS data from the Crustal Motion Observation Network of China (CMONOC), particularly the data from the regional networks of CMONOC observed in 1999 and 2001. We de-lineate 9 tectonically active blocks and 2 broadly distributed deformation zones out of a denseGPS velocity field, and derive block motion Euler poles for the blocks and their relative motionrates. Our result reveals that there are 3 categories of deformation patterns in the Chinese conti-nent. The first category, associated with the interior of the Tibetan Plateau and the Tianshan oro-genic belt, shows broadly distributed deformation within the regions. The third category, associatedwith the Tarim Basin and the region east of the north-south seismic belt of China, shows block-likemotion, with deformation accommodated along the block boundaries only. The second category, mainly associated with the borderland of the Tibetan Plateau, such as the Qaidam, Qilian, Xining(in eastern Qinghai), and the Diamond-shaped (in western Sichuan and Yunnan) blocks, has thedeformation pattern between the first and the third, i.e. these regions appear to deform block-like,but with smaller sizes and less strength for the blocks. Based on the analysis of the lithosphericstructures and the deformation patterns of the regions above, we come to the inference that thedeformation modes of the Chinese continental crust are mainly controlled by the crustal structure.The crust of the eastern China and the Tarim Basin is mechanically strong, and its deformationtakes the form of relative motion between rigid blocks. On the other hand, the northward indentation of the Indian plate into the Asia continent has created the uplift of the Tibetan Plateau and the Tianshan Mountains, thickened their crust, and raised the temperature in the crust. The lower crust thus has become ductile, evidenced in low seismic velocity and high electric conductivity observed. The brittle part of the crust, driven by the visco-plastic flow of the lower crust, deforms extensively at all scales. The regions of the second category located at the borderland of the Tibetan Plateau are at the transition zone between the regions of the first and the third categories in terms of the crustal structure. Driven by the lateral boundary forces, their deformation style is also between the two, in the form of block motion and deformation with smaller blocks and less internal strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号