首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We obtain the preliminary result of crustal deformation velocity field for the Chinese con-tinent by analyzing GPS data from the Crustal Motion Observation Network of China (CMONOC), particularly the data from the regional networks of CMONOC observed in 1999 and 2001. We de-lineate 9 tectonically active blocks and 2 broadly distributed deformation zones out of a denseGPS velocity field, and derive block motion Euler poles for the blocks and their relative motionrates. Our result reveals that there are 3 categories of deformation patterns in the Chinese conti-nent. The first category, associated with the interior of the Tibetan Plateau and the Tianshan oro-genic belt, shows broadly distributed deformation within the regions. The third category, associatedwith the Tarim Basin and the region east of the north-south seismic belt of China, shows block-likemotion, with deformation accommodated along the block boundaries only. The second category, mainly associated with the borderland of the Tibetan Plateau, such as the Qaidam, Qilian, Xining(in eastern Qinghai), and the Diamond-shaped (in western Sichuan and Yunnan) blocks, has thedeformation pattern between the first and the third, i.e. these regions appear to deform block-like,but with smaller sizes and less strength for the blocks. Based on the analysis of the lithosphericstructures and the deformation patterns of the regions above, we come to the inference that thedeformation modes of the Chinese continental crust are mainly controlled by the crustal structure.The crust of the eastern China and the Tarim Basin is mechanically strong, and its deformationtakes the form of relative motion between rigid blocks. On the other hand, the northward indentation of the Indian plate into the Asia continent has created the uplift of the Tibetan Plateau and the Tianshan Mountains, thickened their crust, and raised the temperature in the crust. The lower crust thus has become ductile, evidenced in low seismic velocity and high electric conductivity observed. The brittle part of the crust, driven by the visco-plastic flow of the lower crust, deforms extensively at all scales. The regions of the second category located at the borderland of the Tibetan Plateau are at the transition zone between the regions of the first and the third categories in terms of the crustal structure. Driven by the lateral boundary forces, their deformation style is also between the two, in the form of block motion and deformation with smaller blocks and less internal strength.  相似文献   

2.
中国大陆及周边地区现代岩石圈演化动力学模拟   总被引:25,自引:6,他引:25       下载免费PDF全文
采用有限元方法模拟了近20万年来青藏高原岩石圈形变演化过程,探讨了印度-欧亚大陆的碰撞对中国大陆岩石层形变和应力场的影响以及它们与强地震活动性的关系.结合现代GPS、地震和地质学观测的结果,对比分析了中国大陆在百万年、十万年和十年尺度上的形变和构造应力场的基本格局.研究表明:(1)印度-欧亚大陆的碰撞以及印度大陆的持续向北推进、挤压所产生的应力环境,一直主导了以青藏高原为核心的我国西部地域岩石圈构造、运动和演化,但其影响随着远离青藏高原地区而逐渐变小.(2)断层滑移和重力势作用对于青藏高原东西部以及塔里木盆地的影响相当大,它们导致青藏高原岩石层东西向形变速率增大,对青藏高原的中南部地区产生拉张效应,同时导致塔里木盆地出现整体的右旋趋势.(3)青藏高原区域水平方向形变速率和GPS观测结果吻合较好.但在垂直方向上,一些地区计算结果与观测数据相差较大,这说明单纯的挤压作用不是现代青藏高原隆升的惟一机制.现代青藏高原的隆升可能与其他驱动机制,如地幔对流、重力均衡以及剥蚀作用等有关.(4)印度板块的挤压作用基本上决定了中国大陆西部的主压应力场分布.(5)印度板块的碰撞对中国大陆的强地震活动性有重要影响,但华北地区是个例外,该地区的地震活动性很强而印度板块的挤压在该区域产生的影响却很小,说明其他的驱动力在一定程度上活化了华北地块.  相似文献   

3.
基于华北中西部和青藏高原东北缘3个流动台阵共480个台站新得到的远震XKS(SKS、SKKS和PKS)波分裂结果,并结合研究区已得到的987个台站的分裂结果,获得了高分辨率的上地幔各向异性图像.分析表明,鄂尔多斯块体的时间延迟较小,反映了其稳定性和弱的各向异性变形特征,可能保留了古老克拉通根的"化石"各向异性,但其靠近边缘的局部区域表现出与相邻边缘相一致的各向异性特征,反映了其局部区域受到了与其相邻边缘的构造活动影响.青藏高原东北缘、阿拉善块体和鄂尔多斯块体西缘快波方向主要为NW-SE方向,鄂尔多斯块体北缘主要为NNW-SSE方向,反映了青藏高原沿NE方向推挤过程中岩石圈沿NW-SE方向和NNW-SSE方向发生了伸展变形;位于四川盆地和鄂尔多斯块体两个刚性块体间的秦岭造山带的快波方向为近E-W方向或NWW-SEE方向,时间延迟较大,推测岩石圈东向挤出和软流圈东流共同促进了观测的各向异性;在鄂尔多斯块体南部边缘,快波方向自西向东逆时针沿西南缘六盘山的NW-SE方向转到南缘渭河地堑的近E-W方向再到东南缘太行山的NEE-SWW方向,推断该区域可能存在一个绕刚性块体的逆时针软流圈绕流,与上覆岩石圈左旋简单剪切变形产生了观测的各向异性,并一起驱动了鄂尔多斯块体的逆时针旋转.作为华北克拉通东西部的过渡带,华北中部的各向异性相对复杂,其东部快波方向为近E-W方向或NWW-SEE方向,时间延迟较大,其各向异性主要反映了太平洋板块西向俯冲作用引起的地幔流;其西北部吕梁山的各向异性主要由岩石圈沿NNW-SSE到NW-SE的拉张变形导致,而西南部太行山的各向异性还反映了软流圈绕流作用.鄂尔多斯块体东北缘大同火山区存在一个快波方向顺时针快速旋转且时间延迟较小的区域,可能与火山群下地幔岩浆上涌形成的局部地幔对流相关.紧邻华北北部的中亚造山带中南部快波方向为近E-W方向,其各向异性不仅受到与构造走向一致的岩石圈变形作用,而且也受到太平洋板块西向俯冲引起的地幔流影响.  相似文献   

4.
We obtain the preliminary result of crustal deformation velocity field for the Chinese continent by analyzing GPS data from the Crustal Motion Observation Network of China (CMONOC), particularly the data from the regional networks of CMONOC observed in 1999 and 2001. We delineate 9 technically active blocks and 2 broadly distributed deformation zones out of a dense GPS velocity field, and derive block motion Euler poles for the blocks and their relative motion rates. Our result reveals that there are 3 categories of deformation patterns in the Chinese continent. The first category, associated with the interior of the Tibetan Plateau and the Tianshan orogenic belt, shows broadly distributed deformation within the regions. The third category, associated with the Tarim Basin and the region east of the north-south seismic belt of China, shows block-like motion, with deformation accommodated along the block boundaries only. The second category, mainly associated with the borderland of the Tibetan Plateau, such as the Qaidam, Qilian, Xining (in eastern Qinghai), and the Diamond-shaped (in western Sichuan and Yunnan) blocks, has the deformation pattern between the first and the third, i.e. these regions appear to deform block-like, but with smaller sizes and less strength for the blocks. Based on the analysis of the lithospheric structures and the deformation patterns of the regions above, we come to the inference that the deformation modes of the Chinese continental crust are mainly controlled by the crustal structure. The crust of the eastern China and the Tarim Basin is mechanically strong, and its deformation takes the form of relative motion between rigid blocks. On the other hand, the northward indentation of the Indian plate into the Asia continent has created the uplift of the Tibetan Plateau and the Tianshan Mountains, thickened their crust, and raised the temperature in the crust. The lower crust thus has become ductile, evidenced in low seismic velocity and high electric conductivity observed. The brittle part of the crust, driven by the visco-plastic flow of the lower crust, deforms extensively at all scales. The regions of the second category located at the borderland of the Tibetan Plateau are at the transition zone between the regions of the first and the third categories in terms of the crustal structure. Driven by the lateral boundary forces, their deformation style is also between the two, in the form of block motion and deformation with smaller blocks and less internal strength.  相似文献   

5.
岩石圈流变强度与中国大陆构造运动关系的探讨   总被引:7,自引:0,他引:7       下载免费PDF全文
以GPS观测资料和地震学研究成果为约束,针对不同流变参数的中国大陆岩石圈模型,数值模拟了岩石粘度与中国大陆板块边界作用强度的关系,探讨了陆-陆碰撞对中国大陆分层岩石圈运动的驱动机制.给出了陆-陆碰撞驱动力、附加地形与山根浮力及热浮力对中国大陆构造运动的驱动特点.印度板块、太平洋板块和菲律宾板块对中国大陆驱动的边界作用强度之比约是4:1.25:1,所引起的水平主压应力主要集中在坚硬岩石层;而附加地形等垂直方向作用力在水平方向产生的最大主压应力则主要集中在软弱岩石层.这种垂直方向上的作用力在高原南部地区阻碍陆-陆碰撞向北的推挤运动,在高原东北部增加对其它块体的推挤作用。  相似文献   

6.
以青藏高原北缘及东北缘的柴达木-祁连山地块内的活动断裂、由断裂所围限的微小块体为研究对象,系统收集整理区内活动断裂定量参数和GPS速度场等资料,使用球面应变率计算方法分析研究区内GPS 速度场得到现今构造应变率场,讨论区内最大剪应变率、面膨胀率与旋转率等参数与区域构造变形之间的关系;同时,依据区内详实的活动断裂资料建立精细的微小活动块体模型,利用Backslip模型反演断裂所围限的各个块体边界断裂的滑动速率、块体内部统一应变率及块体欧拉运动学参数等,并与活动构造方法获得的滑动速率做对比;最后,讨论研究区内由GPS速度场所揭示的地壳运动变形模式.结果表明:(1)柴达木-祁连山地区地壳运动,在沿着山脉走向上具有带状区域分块运动特征,大范围内具有弥散变形特征;(2)青藏高原北部变形场应是通过不同断裂差异性相对运动、区域内部逆冲挤压和块体旋转共同作用的结果.从鄂拉山到古浪民勤一带具有强烈的逆冲活动,其两侧地壳块体分别具有逆向旋转的运动性质;(3)在研究区东部GPS速度场所呈现顺时针旋转的形态,应是处于不同地块边界处的中下地壳与地幔介质差异驱动机制对上地壳块体所产生的作用,并以近地表断层应变率积累形式表现的结果,是祁连山地块、阿拉善块体、鄂尔多斯地块等大型块体推挤旋转影响下的复杂运动学形态.  相似文献   

7.
华北地区现今地壳运动动力学初步研究   总被引:10,自引:4,他引:6       下载免费PDF全文
本文基于GPS、断层形变等观测资料,实现华北地区构造运动有限元数值模拟,研究其现今地壳运动及形变动力学机理.结果表明,鄂尔多斯地块、华南地块、东北亚地块等周边构造块体的相对运动基本决定了华北地区现今表面运动及应力场格局.而另一方面,当考虑区域下部岩石层较快速的“拖动”作用时,表面速度场可以得到更好模拟,并同时形成共轭分布的剪应力梯度带.可见太平洋板块的俯冲作用、印-欧板块的碰撞挤压作用等可能造成岩石层深部、浅部运动差异,从而对研究区现今地壳运动产生深刻影响.此外,地形重力作用、断层分布及区域流变结构非均匀性也对现今地壳运动具有一定影响作用,但处于次要地位.  相似文献   

8.
On the basis of summarizing the circulation characteristics and mechanism of earthquakes with magnitude 7 or above in continental China, the spatial-temporal migration characteristics, mechanism and future development trend of earthquakes with magnitude above 7 in Tibetan block area are analyzed comprehensively. The results show that there are temporal clustering and spatial zoning of regional strong earthquakes and large earthquakes in continental China, and they show the characteristics of migration and circulation in time and space. In the past 100a, there are four major earthquake cluster areas that have migrated from west to east and from south to north, i.e. 1)Himalayan seismic belt and Tianshan-Baikal seismic belt; 2)Mid-north to north-south seismic belt in Tibetan block area; 3)North-south seismic belt-periphery of Assam cape; and 4)North China and Sichuan-Yunnan area. The cluster time of each area is about 20a, and a complete cycle time is about 80a. The temporal and spatial images of the migration and circulation of strong earthquakes are consistent with the motion velocity field images obtained through GPS observations in continental China. The mechanism is related to the latest tectonic activity in continental China, which is mainly affected by the continuous compression of the Indian plate to the north on the Eurasian plate, the rotation of the Tibetan plateau around the eastern Himalayan syntaxis, and the additional stress field caused by the change of the earth's rotation speed.
Since 1900AD, the Tibetan block area has experienced three periods of high tides of earthquake activity clusters(also known as earthquake series), among which the Haiyuan-Gulang earthquake series from 1920 to 1937 mainly occurred around the active block boundary structural belt on the periphery of the Tibetan block region, with the largest earthquake occurring on the large active fault zone in the northeastern boundary belt. The Chayu-Dangxiong earthquake series from 1947 to 1976 mainly occurred around the large-scale boundary active faults of Qiangtang block, Bayankala block and eastern Himalayan syntaxis within the Tibetan block area. In the 1995-present Kunlun-Wenchuan earthquake series, 8 earthquakes with MS7.0 or above have occurred on the boundary fault zones of the Bayankala block. Therefore, the Bayankala block has become the main area of large earthquake activity on the Tibetan plateau in the past 20a. The clustering characteristic of this kind of seismic activity shows that in a certain period of time, strong earthquake activity can occur on the boundary fault zone of the same block or closely related blocks driven by a unified dynamic mechanism, reflecting the overall movement characteristics of the block. The migration images of the main active areas of the three earthquake series reflect the current tectonic deformation process of the Tibetan block region, where the tectonic activity is gradually converging inward from the boundary tectonic belt around the block, and the compression uplift and extrusion to the south and east occurs in the plateau. This mechanism of gradual migration and repeated activities from the periphery to the middle can be explained by coupled block movement and continuous deformation model, which conforms to the dynamic model of the active tectonic block hypothesis.
A comprehensive analysis shows that the Kunlun-Wenchuan earthquake series, which has lasted for more than 20a, is likely to come to an end. In the next 20a, the main active area of the major earthquakes with magnitude 7 on the continental China may migrate to the peripheral boundary zone of the Tibetan block. The focus is on the eastern boundary structural zone, i.e. the generalized north-south seismic belt. At the same time, attention should be paid to the earthquake-prone favorable regions such as the seismic empty sections of the major active faults in the northern Qaidam block boundary zone and other regions. For the northern region of the Tibetan block, the areas where the earthquakes of magnitude 7 or above are most likely to occur in the future will be the boundary structural zones of Qaidam active tectonic block, including Qilian-Haiyuan fault zone, the northern margin fault zone of western Qinling, the eastern Kunlun fault zone and the Altyn Tagh fault zone, etc., as well as the empty zones or empty fault segments with long elapse time of paleo-earthquake or no large historical earthquake rupture in their structural transformation zones. In future work, in-depth research on the seismogenic tectonic environment in the above areas should be strengthened, including fracture geometry, physical properties of media, fracture activity behavior, earthquake recurrence rule, strain accumulation degree, etc., and then targeted strengthening tracking monitoring and earthquake disaster prevention should be carried out.  相似文献   

9.
Chinese scientists proposed that large earthquakes that occurred in mainland China are controlled by the movement and deformation of active tectonic blocks. This scientific hypothesis explains zoned phenomenon of seismicity in space. The active tectonic blocks are intense active terranes formed in late Cenozoic and late Quaternary, and the tectonic activity of block boundaries is the intensest. Global Navigation Satellite System(GNSS)has advantages of high spatio-temporal resolution, broad coverage, and high accuracy, and is utilized to monitor contemporary crustal deformation. High accuracy and resolution of GNSS velocity field within mainland China and vicinities provided by previous studies clearly demonstrate that different active tectonic blocks behave as different patterns of movement and deformation, and block interaction boundaries have intense tectonic deformation. The paper firstly introduces the GPS networks operated by the Crustal Movement Observation Network of China(CMONOC)since 1999, and GNSS data processing methods, including GAMIT, BERNESE and GIPSY/OASIS, and discusses the advantages of using South China block as a regional reference frame for GNSS velocity field, then proposes three strategies of block division, F-test, quasi-accurate detection(QUAD), and clustering analysis. Furthermore, we introduce rigid and non-rigid block motions. Rigid block motion can be denoted by translation and rotation, while non-rigid block motion can be described by rigid motion and internal strain deformation. Internal strain deformation can be divided into uniform and linear strains. We also review the usage of F-test to distinguish whether the block acts as rigid deformation or not. In addition, combining with recent GNSS velocity results, we elaborate the characteristics of present movement of rigid block, such as the South China, Tarim, Ordos, Alashan, and Northeast China, and that of non-rigid block, such as the Tibetan plateau, Tian Shan, and North China plain. Especially, the Tibetan plateau and Tian Shan seem to deform continuously with significant internal deformation. In order to enrich and perfect the active tectonic block hypothesis, we should carefully design dense GNSS networks in inner blocks and block boundaries, optimize utilizing other space geodesy technologies such as InSAR, and strengthen combining study of geodesy, seismogeology and geophysics. Through systematic summary, this paper is very useful to employing GNSS to investigate characteristics of block movement and dynamics of large earthquakes happening in block interaction boundaries.  相似文献   

10.
南北地震带震源机制解与构造应力场特征   总被引:23,自引:7,他引:16       下载免费PDF全文
南北地震带作为中国大陆地应力场一级分区的边界,其构造应力场的研究对理解大陆强震机理、构造变形和地震应力的相互作用具有重要意义.本文收集南北地震带1970—2014年的震源机制解819条,按照全球应力图的分类标准对震源机制解进行分类,发现其空间分布特征与地质构造活动性质比较吻合.P轴水平投影指示了活动块体的运动方向,T轴水平投影在川滇块体及邻近地区空间差异特征最为突出,存在顺时针旋转的趋势.南北地震带的最大水平主应力方向具有明显的分区特征,北段为NE向走滑类型的应力状态,中段为NEE—EW—NWW向的逆冲类型,南段为SE—SSE—NS—NNE向走滑和正断类型,在川滇块体的北部和西边界应力状态为EW—SE—SSE的正断层类型,表明来自印度板块的NNE或NE向的水平挤压应力和青藏高原物质东向滑移沿大型走滑断裂带向SE向平移的复合作用控制了南北地震带的岩石圈应力场.川滇块体西边界正断层类型应力状态范围与高分辨率地震学观测得到的中下地壳低速带范围基本吻合,青藏高原向东扩张的塑性物质流与横向边界(丽江—小金河断裂带)的弱化易于应变能的释放,在局部地区使NS向拉张的正断层向EW向拉张正断层转变.反演得到的应力状态基本上与各种类型地震的破裂方式比较吻合,也进一步验证反演结果的可靠性,可为地球动力学过程的模拟和活动断层滑动性质的厘定提供参考.  相似文献   

11.
近十多年来藏南地区GPS网的多期观测结果为研究其构造变形提供了精确数据。本文将该区划分为冈底斯、西喜马拉雅、中喜马拉雅、拉萨4个块体,建立了各块体的弹性运动模型。以藏北高原的旋转框架为参考基准,得到藏南地区的水平形变场和应变场,分析形变场和应变场的空间变化,发现藏南地区存在强烈的S-N向挤压缩短变形,同时也有明显的E-W向伸展变形。南北边界之间的平均缩短速率16.9±2.5mm/a,大约吸收了印度与欧亚汇聚速率的42.4%。在雅鲁藏布江缝合线与班公错—嘉黎断裂之间,从80°E到90°E,地壳E—W向的伸展速率16.3±2.4mm/a。因此,藏南地区现今构造变形是以挤压缩短为主,S-N向挤压缩短与E—W伸展共存的复合变形模式。印度板块向欧亚板块的俯冲推挤是该区域变形的主要驱动力,重力作用对其变形也有重要贡献。  相似文献   

12.
南海地球物理场特征及基底断裂体系研究   总被引:7,自引:3,他引:7  
南海海域主体可划分为南海北缘、中西沙、南沙南海海盆四块,各块具有明显不同的重磁场特征。反演得到的莫霍面总体趋势由陆向洋抬升,反映陆壳、拉伸陆壳、过渡壳、洋壳的分布。东沙高磁异常含一定的高频成份,与新生代玄武岩及中生代岩浆岩有关,而其低频成份可能反映了发育的下地壳高速层,南海海域断裂极为发育,可分为北东向断裂组、东西向断裂组、北西向断裂组和南北向断裂组,南海北缘、南缘均以北东向张性断裂与北西向张剪性、剪性断裂为主要格架,形成了、南北分带、东西分块”构造格局。  相似文献   

13.
台湾—吕宋会聚带的地壳运动特征及其动力学机制   总被引:3,自引:1,他引:2       下载免费PDF全文
南海东部的台湾-吕宋会聚带是南海四个边界中构造背景最为复杂、构造活动最为活跃.本文收集该区的GPS速度场资料,通过对速度场进行样条插值获得了该区连续的速度场、主应变率场、最大剪应变率场等结果.研究发现,该区的地壳运动受西北侧华南陆缘基底隆起和西南侧巴拉望岛阻挡、台湾北部24°N俯冲极转换、琉球海沟弧后扩张,以及菲律宾大...  相似文献   

14.
田建慧  罗艳 《地震》2019,39(2):110-121
本文收集了1976—2018年发生在中国大陆及其周边地区(15°~55°N, 65°~125°E)的4303个地震震源机制解, 分析了该区震源机制解和P、 T轴空间分布特征, 并使用这些震源机制解, 反演得到了中国大陆及周边地区二维构造应力场分布。 应力场反演结果表明, 云南大部、 青藏高原大部以及华北华南大部以走滑型应力性质为主, 印度洋板块与欧亚板块的强烈碰撞控制着中国西部地区, 大量的逆断型地震集中分布在青藏高原周缘和西域活动地块的天山地区。 青藏高原内部也存在正断型地震, 且应力场方向在26°N发生了很大的变化。 位于青藏高原东构造线以南的滇缅活动块体, 最大主压应力σ1方向在大致100°E发生突变, 由以西的NNE方向偏转到NNW方向。 中国东部的东北块体到华北块体再到华南块体, 最大主压应力方向有一个从NE向逐渐转变成EW向再变化到NW向的旋转趋势。 应力场总体结果表明, 中国东部应力场主要受到太平洋板块和菲律宾板块对欧亚大陆俯冲的作用, 中国西部主要受印度板块向北碰撞欧亚大陆的影响, 块体内部相互作用、 块体与断裂带相互作用也对应力场变化产生影响。  相似文献   

15.
青藏高原东南缘地震各向异性及其深部构造意义   总被引:1,自引:0,他引:1       下载免费PDF全文
青藏东南缘是青藏高原物质东流的通道,为了更全面了解复杂的岩石圈结构和强烈的变形特征,本文介绍了青藏东南缘岩石圈各向异性的形态,综合其他研究者得到的该区域壳幔各向异性结果,增加了部分新的资料,更新了青藏东南缘岩石圈方位各向异性图像,探讨了区域深部构造意义.
基于近场小震、远震和背景噪声资料计算结果,青藏东南缘地震各向异性展现出独特的区域空间分布和垂向层次性分布形态,展现了3个主要特征.(1)青藏东南缘上地壳各向异性与地表变形测量结果相符,快剪切波偏振方向(即快波方向)呈现与地表运动特征一致的发散性,与主压应力方向一致,但受到地质构造的影响.(2)青藏东南缘下地壳方位各向异性展现了更好的方向一致性,但方位各向异性程度相对较弱,在红河断裂带西北端部和小江断裂带下方有两个下地壳低速区,其方位各向异性程度与上地壳相当.(3)青藏东南缘岩石圈方位各向异性,呈现南、北分区特征,南北分界线大致在26°20'N,快波方向在北部近似为NS方向,在南部近似为EW方向.
本文推测:(1)在26°20'N北侧的上地幔有较厚的高速体,高速体南侧边缘呈现出近EW走向的直立墙形构造,其南侧软弱的上地幔物质在EW方向上流动,导致了岩石圈方位各向异性特征在空间发生突然的变化,快波方向由北部的NS变为南部的EW方向;(2)小江断裂带是现今的华南地块的地壳西边界,但岩石圈尺度的方位各向异性展现出的趋势性表明,华南地块的上地幔物质越过了小江断裂带到达其西侧,揭示了华南地块与青藏地块接触碰撞造成的岩石圈物质变形和上地幔软流圈物质运移的深部图像.地震各向异性能揭示区域深部构造与介质变形的信息,不同观测资料的综合分析有助于获得更清晰的各向异性三维图像.  相似文献   

16.
利用多种地震学参数研究中国大陆地壳应变场   总被引:14,自引:0,他引:14  
地壳应变场研究是地球动力学研究的一个基础性领域, 以往文献的探索大多集中在地壳形变的测量和研究上, 包括大面积水准测量和GPS观测等。 文中利用多种地震学参数研究中国大陆地壳应变场, 利用哈佛CMT目录和现代中国地震目录得到了中国大陆不同区域面波震级与标量地震矩的统计关系, 进而采用中国大陆历史地震资料研究中国大陆地壳应变场, 给出地震最大剪切应变率场的分布。 研究结果显示, 青藏高原及其周边地区是最大剪切应变率的高值区, 帕米尔和阿萨姆地区的应变率值最大。 与GPS得到的应变场结果进行比较, 两者的结果存在一致趋势。 利用NEIC宽频带地震辐射能量目录研究了中国大陆的地震视应变分布, 显示地震的视应变分布与地壳应变水平存在一定相关关系, 且发生在青藏高原周边地区地震的视应变水平较高。 这些研究结果为地球动力学研究的进一步深入探讨提供了新的科学资料。  相似文献   

17.
Using high precision GPS data for the period of 1999–2007 from the China Crustal Movement Observation Network, we have constructed a plate kinematic model of crustal deformation of Fenwei basin, China. We have examined different kinematic models that can fit the horizontal crustal deformation of the Fenwei basin using three steps of testing. The first step is to carry out unbiasedness and efficiency tests of various models. The second step is to conduct significance tests of strain parameters of the models. The third step is to examine whether strain parameters can fully represent the deformation characteristics of the 11 tectonic blocks over the Fenwei basin. Our results show that the degree of rigidity at the Ordos, Hetao, Yinshan and South China blocks is significant at the 95% confidence level, indicating the crustal deformation of these blocks can be represented by a rigid block model without the need to consider differential deformation within blocks. We have demonstrated that homogeneous strain condition is suitable for the Yinchuan basin but not for other 6 blocks. Therefore, inhomogeneous strains within blocks should be considered when establishing the crustal deformation model for these blocks. We have also tested that not all of the quadratic terms of strain parameters are needed for the Yuncheng-Linfen block. Therefore, four kinds of elastic kinematic models that can best represent the detailed deformation characteristics of the 11 blocks of Fenwei basin are finally obtained. Based on the established model, we have shown that the current tectonic strain feature of the Fenwei basin is mainly characterized by tensile strain in the NW–SE direction, and the boundaries betweem the Ganqing and Ordos blocks and the Shanxi graben possess the maximum shear strain. A comparison between our results and past geological and geophysical investigations further confirms that the model established in this paper is reasonable.  相似文献   

18.
中国大陆地壳应力场与构造运动区域特征研究   总被引:41,自引:16,他引:25       下载免费PDF全文
系统研究了1918~2006年间中国大陆及其周缘发生的3115个M4.6以上中、强地震的震源机制解,得到中国大陆地壳区域应力场的压应力轴和张应力轴空间分布的统计结果.探讨了大陆应力场的结构,以及周围板块运动对中国大陆应力场影响作用范围及其界线.结果表明,中国东部的华北地区受到太平洋板块向欧亚板块俯冲挤压的同时,又受到从贝加尔湖经过大华北直至琉球海沟的广阔范围内存在的方位为170°引张应力场的控制.华北地区大地震的震源机制解反映出,该区地震发生为NEE向挤压应力和NNW向张应力的共同作用结果.印度洋板块向欧亚板块的碰撞挤压运动所产生的强烈的挤压应力,控制了喜马拉雅、青藏高原、乃至延伸到天山及其以北的广大地区.在青藏高原周缘地区和中国西部的大范围内,压应力P轴水平分量位于20°~40°,形成了近北东方向的挤压应力场,大量逆断层型强震集中发生在青藏高原的南、北和西部周缘地区以及天山等地区. 本文结果表明,正断层型地震集中发生在青藏高原中部高海拔的地区.证明了青藏高原周缘区域发生南北向强烈挤压短缩的同时,中部高海拔地区存在着明显的近东西向的扩张运动.根据本文最新结果,得到了华北、华南块体之间地壳区域应力场的控制边界线,发现该分界线与大地构造、岩石圈板块构造图等有较大差异,特别是在大别及其以东地区, 该分界线向东南偏转,在沿海的温州附近转向东,最终穿过东海直至琉球海沟.台湾纵谷断层是菲律宾海板块与欧亚板块之间碰撞挤压边界,来自北西西向运动的菲律宾海板块构造应力控制了从台湾纵谷、华南块体,直到中国南北地震带南段东部地域的应力场. 地震震源机制结果还表明,南北地震带南段西侧其P轴大约为NNE方向,与青藏高原的P轴方位一致.南北地震带南段东侧其P轴大约为NWW方向,与华南块体的P轴方位一致.因此,将中〖JP2〗国大陆分成东、西两部分的南北地震带南段是印度洋板块与菲律宾海板块在中国大陆内部影响控制范围的分界线.  相似文献   

19.
王刚  王二七 《地震地质》2005,27(2):188-199
在印度和欧亚大陆晚新生代SN向陆内汇聚作用下,川滇地块沿鲜水河-小江左行走滑断裂和红河-哀牢山右行走滑断裂发生SE向逃逸和顺时针旋转,这必然造成其南缘的滇中、楚雄等地区地壳发生挤压缩短和隆升。然而,在滇中高原,SN向的小江断裂系发生张扭性运动,沿断裂出现众多的第四纪伸展和拉分盆地,这反映出滇中高原在晚新生代处于近EW向的伸展环境。力学分析与地质现象之间的矛盾暗示有一种尚未被揭示的伸展变形机制。文中根据该地区的地质和地貌特征论证了晚新生代滇中背形构造的存在,揭示出是背形构造的应力分布状态导致了滇中高原上部地壳EW向伸展的发生,从而使得小江断裂发生分裂并伴随伸展构造的发育  相似文献   

20.
在青藏高原的运动变形过程中,断层活动起着至关重要的作用.本文利用有限元数值模拟的方法,分别计算了在GPS做边界约束下青藏高原及周边区域的连续体模型和含断层的不连续体模型的运动状态和应力场分布.从连续性模型和非连续体模型的差异发现,断层存在与否很大程度上影响了青藏高原现代运动场的分布.主要体现在,断层的滑移运动(1)增加了青藏高原东西两侧的拉张趋势;(2)加大了青藏高原物质东移的速度;(3)改变了塔里木和柴达木盆地的运动状态.模拟结果显示,非连续模型的运动场分布与GPS观测结果吻合程度大大高于连续体模型结果,表明断层活动在青藏高原的运动学和动力学过程中起着重要的作用,在研究青藏高原的动力学机制中,必须考虑断层作用的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号