首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
汶川8.0级地震前区域地壳运动与应变场动态特征   总被引:4,自引:1,他引:3  
江在森  武艳强  方颖  李鹏  王武星 《地震》2009,29(1):68-76
利用中国地壳运动观测网络GPS资料, 通过获取水平相对运动、 水平应变场分布变化等, 研究了汶川8.0级地震前的区域水平运动与应变率场变化, 以及大尺度地壳运动动态特征等。 研究结果表明, 发生汶川8.0级地震的龙门山断裂带, 由于受到其西侧巴颜喀拉地块向东运动的构造动力作用, 处于缓慢的应变积累状态。 在汶川地震前龙门山断裂带相对华南地块的差异运动小于GPS观测误差。 川滇地区应变场图像显示2004-2007年面应变率负值最高区出现在汶川8.0级地震震中区及其附近, 可能反应了局部挤压增强。 GPS基准站资料反映的大尺度北东向地壳缩短的相对运动增强, 也形成了促进龙门山断裂带发生大破裂的区域构造动力增强的背景条件。  相似文献   

2.
2008年汶川8.0级地震前横跨龙门山断裂带的震间形变   总被引:17,自引:4,他引:13       下载免费PDF全文
利用区域GPS和水准测量资料,结合地震构造背景的分析,本文研究2008年汶川8.0级地震前横跨龙门山断裂带地区的震间地壳形变,探讨引起这种形变的活动构造与动力学模式,并由此认识汶川地震的孕育与成因机制.主要结果表明:1997~2007年期间,自龙门山断裂带中段朝北西约230 km的地带内存在垂直于断裂的水平缩短变形、以及平行于断裂的水平右旋剪切变形,缩短率为1.3×10-8/a (即:0.013 mm/km/a),角变形速率为2.6×10-8/a;同一地带在1975~1997年期间还表现出垂直上隆变形,上隆速率在龙门山前山断裂与中央断裂之间仅0.6 mm/a,而至龙门山后山断裂及其以西达2~3 mm/a.这些反映了在汶川地震之前至少10~30余年,龙门山断裂带中段的前山与中央断裂业已闭锁、并伴有应变积累.造成这种形变的主要原因是:以壳内的低速层为“解耦”带,巴颜喀拉地块上地壳朝南东的水平运动在四川盆地西缘受到华南地块的阻挡、转换成龙门山断裂带中段的逆冲运动;由于该断裂段的震间闭锁,致使西侧的巴颜喀拉地块的上地壳发生横向缩短以及平行断裂的右旋剪切变形.然而,龙门山断裂带北段在1997~2007年期间除了有大约0.9 mm/a的右旋剪切变形外,横向的缩短变形极微弱,这可能与该断裂段西侧的岷江、虎牙、龙日坝等断裂带吸收了巴颜喀拉地块朝东水平运动的大部分有关.另外,汶川地震前,横跨龙门山断裂带中段与北段的地壳形变特征的差异,与汶川地震时能量释放的空间分布吻合.  相似文献   

3.
汶川MS8.0地震孕育发生的机制与动力学问题   总被引:1,自引:0,他引:1       下载免费PDF全文
2008年5月12日四川省汶川县发生了MS8.0强烈地震.发震断层是龙门山断裂带的映秀—北川断裂.分析震前的GPS速度场发现,从巴颜喀拉块体西部到龙门山断裂带沿大约N103°E方向的缩短速率为13.0 mm/a,龙门山断裂带的右旋走滑速率1.1 mm/a,断裂带处于闭锁状态.四川盆地沿大约N103°E方向有少量的压缩变形,而沿SW方向有少量的拉张变形.同震位移场显示,这次地震可能是巴颜喀拉块体SE向逆冲与四川盆地NW向俯冲同时发生的.应变场分析发现,震前震中区的主压与主张应变率分别为-30.840×10-9/a与13.956×10-9/a,主压应变轴N105.4°E与震源机制解得到的主压应力轴的方向N103°E一致.由本文提出的应力-应变机制得到的断层滑动方向和走向与地表破裂调查和震源机制解得到的结果一致.印度、太平洋和菲律宾海板块与欧洲板块的相互作用是龙门山断裂带积累弹性应变能和孕育汶川地震的长期作用力.苏门达腊大地震使青藏高原和华南块体的相互作用加强,促进了汶川地震的发生.  相似文献   

4.
为了研究与总结2008年5月12日汶川8.0级地震前GPS与跨断层资料反映的龙门山断裂带及其周边地区的运动、构造变形、应变积累演化过程,以及汶川地震临震阶段可能的物理机制,本文综合1999~2007期GPS速度场、1999~2008年大尺度GPS基线时间序列、1985~2008年跨断层短水准等资料进行了相关分析与讨论。结果表明:(1)GPS速度剖面结果显示,宽达500km的川西高原在震前有明显的连续变形,而四川盆地一侧和跨龙门山断裂带基本没有变形趋势,表明震前川西高原在持续不断地为已经处于闭锁状态的龙门山断裂带提供能量积累。(2)GPS应变率结果显示,震前龙门山断裂带中北段的NW侧EW向挤压变形明显,变形幅度从远离断裂带较大到靠近断裂带逐渐减小,而断裂带变形微弱;龙门山断裂带西南段周边形成了显著的EW向挤压应变集中区,应变积累速率明显大于中北段。(3)断层闭锁程度反演结果显示,除了汶川地震的震源位置闭锁相对较弱,且西南段有大概20km宽度断层在12~22.5km深度为蠕滑状态以外,震前整条龙门山断裂基本处于强闭锁状态。(4)大尺度GPS基线结果显示,跨南北地震带区域的NE向基线从2005年开始普遍出现压缩转折,反映NE向地壳缩短的相对运动增强。(5)跨断层短水准场地结果显示,震前年均垂直变化速率和形变累积率很低,表明断层近场垂向活动很弱、闭锁较强。通过以上分析认为,在相对小尺度的地壳变形中,震前龙门山断裂带深浅部均处于强闭锁状态,断裂带水平与垂直变形都很微弱,这可能经历了一个缓慢的过程,而且越是临近地震的发生,微弱变形的范围可能越大;在相对大尺度的地壳变形中,震前龙门山断裂带西侧的巴颜喀拉块体东部地区经历了地壳缓慢且持续的缩短挤压变形,为龙门山断裂带应变积累持续提供了动力支持。  相似文献   

5.
2013年4月20日四川省芦山县发生了MS7.0级强烈地震,该地震的发生与龙门山断裂带的活动有直接关系。通过研究龙门山断裂带及周边区域的形变监测资料,得出:龙门山断裂带的活动趋势取决于巴颜喀拉块体与四川盆地的相对运动,而其运动的主要动力来自青藏高原和上扬子克拉通地块的推挤。结合发震区域地质构造和地壳形变观测数据分析结果,论述此次地震与龙门山断裂带的活动关系,并提出未来5年重点监视区域。  相似文献   

6.
利用中国地壳运动观测网络GPS资料,并结合断层形变及区域水准等观测资料,从不同时空尺度的地壳运动与变形角度对汶川大地震进行了初步研究。主要内容包括发生汶川大地震的龙门山断裂带的应变积累与构造动力背景分析,震前地壳运动、应变场和构造变形的动态过程分析,以及问题讨论与认识。主要研究结果如下:  相似文献   

7.
根据弹性回跳理论,利用1999至2007年相对中国大陆的三期GPS水平运动速度场资料,着重对每一期跨龙门山断裂带的GPS站点运动速度,在平行龙门山断裂带上的投影速度进行计算,在此基础上,以图示和幂函数拟合方式,分析了龙门山断裂带两侧地面相对运动变形情况。结果显示:汶川8.0级地震前龙门山断裂带两侧地面相对运动出现了右旋剪切运动,且这种右旋剪切运动受阻于龙门山断裂带。这对于识别判定孕震弹性应变能积累变形异常,进而开展地震预测与研究具有积极意义。  相似文献   

8.
横跨龙门山断裂带南段的连续GPS测网记录到了2013年4月20日芦山MS7.0地震孕育过程相关的地壳变形信息,为研究此次地震前孕震区地壳变形动态演化过程提供重要的基础资料.研究表明,汶川地震的发生导致茂县-汶川断裂南段及以东地区挤压应变和左旋剪切应变加载.GPS跨单条断裂的基线平均缩短速率约为1~2 mm/a,跨越整个断裂带的基线平均缩短速率约为8~10 mm/a,且均表现出随芦山地震临近年均缩短速率逐渐减小的特征;多站组合的应变参数时序结果显示,龙门山断裂带南段主压应变率自西向东逐渐减小,主压应变方向为N30°~45°W近似垂直于断裂带;北川-映秀断裂以东地区以挤压变形为主兼有明显的左旋剪切变形,且面应变和第一剪应变随着芦山地震的临近应变率逐渐减小;北川-映秀断裂以西则表现为在时间进程上逐渐增强的右旋剪切变形.区域GPS变形场结果显示汶川震后龙门山断裂带南段挤压应变积累速率显著大于震前,且茂县-汶川断裂以东地区表现出左旋剪切应变积累特征.综合分析认为,汶川地震后巴颜喀拉块体东向运动加速,运动速度自西向东递减,致使在汶川地震中未破裂的龙门山断裂带南段的挤压应变积累水平进一步增强.  相似文献   

9.
利用中国地壳运动观测网络和中国大陆构造环境监测网络GPS区域网观测资料,解算川滇地区1999—2007年、2009—2011年相对欧亚板块的水平速度场,并借助连续应变模型获得了川滇地区应变率场。通过分析汶川地震前后地壳水平运动速度场和应变率场的动态变化,得到:(1)水平相对运动与主应变场分布反映出在巴彦喀拉地块的东向推挤与华南地块的强烈阻挡下,龙门山断裂带长期的应力应变积累并突然释放导致了汶川大地震的发生;(2)发生大地震的龙门山断裂带在地震前应变量值并不显著,处于应变亏损状态,应变高值区主要集中在川滇菱形块体的东边界与北边界;(3)大地震的发生导致震源区及其周边应力应变剧烈调整,龙门山断裂带中南段显示出明显的应变增强态势,一定程度上反映了2013年芦山7.0地震发生前的应变背景累积信息。  相似文献   

10.
利用中国地壳运动观测网络GPS资料,并结合断层形变及区域水准等观测资料,从不同时空尺度的地壳运动与变形角度对汶川大地震进行了初步研究.主要内容包括发生汶川大地震的龙门山断裂带的应变积累与构造动力背景分析,震前地壳运动、应变场和构造变形的动态过程分析,以及问题讨论与认识.主要研究结果如下.  相似文献   

11.
2017年8月8日四川发生九寨沟M7.0地震,是继2008年汶川M8.0地震后发生在巴颜喀拉块体东部的又一强震.现今GPS速度观测数据显示,2008年汶川地震前后的1999-2007年和2011-2016年两个时间段内巴颜喀拉块体东部地表速度场存在明显的差异.本文以实际GPS速度观测资料为约束,构建三维有限元地球动力学模型,分别计算分析了两个时段内震源区及周边现今地壳形变、弹性应变能和应力积累特征,进一步探讨汶川地震的发生对九寨沟地区变形及应力的影响.数值模拟结果显示,汶川地震之后(2011-2016年)巴颜喀拉块体东部的地壳形变、弹性应变能积累及应力积累速率均明显大于震前,增加量值达1.5-3倍;九寨沟地震发震断裂上库仑应力增长率在1999-2007年约为0.7 kPa·a~(-1),2011-2016年间增至1.2 kPa·a~(-1).上述结果表明,现今巴颜喀拉块体东部地壳应力积累过程有利于左旋走滑型九寨沟地震的发生,汶川地震的发生调整了区域应力状态,加速了九寨沟地震的孕育过程.  相似文献   

12.
2008年汶川地震发生在巴颜喀拉块体的东边界.为了探讨区域动力学背景与该地震发生的关系,本文基于活动构造、震源机制解、GPS站速度、地震破裂展布以及历史大地震活动等资料分析巴颜喀拉块体北、东两个边界断裂系统的运动、变形以及大地震序列发生的关联性.结果表明:由于受到华南地块的阻挡,巴颜喀拉块体朝东-南东方向的"逃逸"运动...  相似文献   

13.
贾科  周仕勇 《地震学报》2018,40(3):291-303
自本世纪以来,青藏高原巴颜喀拉块体周缘密集地发生了7次MW≥6.5强震事件,包括伤亡惨重的2008年汶川MW7.9地震和2017年九寨沟MW6.5地震。本文根据这7次强震事件中先前地震对后续地震的库仑应力改变(dCFS)的计算结果,结合基于ETAS模型得到的背景地震活动性的变化结果,研究了强震间的触发关系,以试图解释发生在环巴颜喀拉块体的几次强震的发震机理并探讨其构造意义。结果表明,各个强震的库仑应力变化与其造成的背景地震活动性变化呈正相关,并且在这7次强震中,汶川地震对芦山地震有显著的触发作用,并造成芦山地区背景地震活动性的显著提高。同时汶川地震对九寨沟地震的发生具有一定的延迟作用,造成九寨沟地区背景地震活动性降低。除此之外,其它地震之间均无明显的触发/延迟作用或显著的背景地震活动性变化。这表明该强震序列的孕震机制主要是巴颜喀拉块体东南向持续挤压的构造运动,推断巴颜喀拉块体目前仍处于构造运动活跃期,因此包括巴颜喀拉块体周缘在内的我国西南地区未来的强震危险性值得持续关注。   相似文献   

14.
基于活动块体的基本概念,综合对研究区内活动断裂带空间展布、地震活动性等资料的分析将巴颜喀拉块体东部及邻区划分为巴颜喀拉块体(I)、华南块体(Ⅱ)、川滇块体(Ⅲ)和西秦岭块体(IV)等4个一级块体.利用GPS形变场、地球物理场等资料结合F检验法,将巴颜喀拉块体划分为阿坝(I1)、马尔康(I2)和龙门山(I3)3个次级块体,将西秦岭块体划分为岷县(IV1)和礼县(IV2) 2个次级块体.利用分布在各个块体内部的GPS测站,计算各活动块体及块体边界断裂带的运动变形特征.结果表明:各活动块体的整体运动包括平移和旋转运动;东昆仑断裂带、甘孜—玉树断裂带和鲜水河断裂带的滑动速率明显高于龙门山断裂带的滑动速率;巴颜喀拉块体东部走向北西或北西西的边界断裂表现出左旋拉张的特性;走向北东的边界断裂带,除成县—太白断裂带外,均表现出右旋走滑兼挤压的活动特征.巴颜喀拉块体的东向运动存在自西向东的速度衰减,衰减主要被龙日坝断裂带和岷江断裂带分解吸收,其中龙日坝断裂带的水平右旋分解非常明显,约为~4.8±1.6 mm/a,岷江断裂带的水平分解较弱.龙门山断裂带被马尔康、龙门山和岷县等次级块体分成南、中、北三段,龙门山断裂带中段上的主压应变率要明显小于龙门山断裂带南段上的应变率,其北西侧变形幅度从远离断裂带较大到靠近断裂带逐渐减小,表明其在震前已经积累了较高的应变能,有利于发生破裂滑动.汶川地震后,地表破裂带和余震分布揭示的断裂带运动性质自南西向北东由以逆冲运动为主,逐渐转为逆冲兼走滑的特征可能与龙门山断裂带中段所受主压应力方向自南西向北东的变化有关.马尔康、龙门山和岷县3个次级块体与华南块体之间较低的相对运动速度以及龙门山断裂带低应变率、强闭锁的特征都决定了汶川地震前龙门山断裂带低滑动速率的运动特征.  相似文献   

15.
The Wenchuan earthquake occurred near the "triple junction" linking the Bayan Har block, the South China block, and the Sichuan-Yunnan rhombic block, and its influences on the surrounding blocks and the main fault zones in the Sichuan-Yunnan region, i.e., the block boundary zone, cannot be ignored. In this paper, changes of movement and stress of the fault zones before and after a strong earthquake were simulated based on the GPS repetition survey results recently obtained during 1999–2007, 2009–2011, and 2011–2013 with a two-dimensional finite-element contact model and the "block- loading" method. The results show that, before the Wenchuan earthquake, the movement of the Longmenshan fault zone was very slow and its compressive stress accumulated rapidly; after the Wenchuan earthquake, movements toward the E-SSE direction of the Bayan Har, southwestern Yunnan, and rhombic blocks were enhanced, and the dextral and horizontal compressive speeds and annual accumulative compressive stress of the Longmenshan fault zone increased markedly by factors of 4.5, 2.1, and 2.5, respectively. The southern Xianshuihe, Anninghe, Zemuhe, Daliangshan, and Lijiang-Xiaojinhe fault zones accumulated compressive stress rapidly, forming enhanced compressive stress zones along a NE strike crossing the central part of the Sichuan-Yunnan region. The tensional movement of the Xianshuihe fault zone was enhanced and the slip movement in the central part of the zone was reversed in a short time. The changes are tightly related to the medium-intensity earthquakes that occurred during the same period in this region, revealing that the spatial migration of seismic activity is related to changes of movement of the blocks.  相似文献   

16.
Based on GPS velocity during 1999-2007, GPS baseline time series on large scale during 1999-2008 and cross-fault leveling data during 1985-2008, the paper makes some analysis and discussion to study and summarize the movement, tectonic deformation and strain accumulation evolution characteristics of the Longmenshan fault and the surrounding area before the MS8.0 Wenchuan earthquake, as well as the possible physical mechanism late in the seismic cycle of the Wenchuan earthquake. Multiple results indicate that:GPS velocity profiles show that obvious continuous deformation across the eastern Qinghai-Tibetan Plateau before the earthquake was distributed across a zone at least 500km wide, while there was little deformation in Sichuan Basin and Longmenshan fault zone, which means that the eastern Qinghai-Tibetan Plateau provides energy accumulation for locked Longmenshan fault zone continuously. GPS strain rates show that the east-west compression deformation was larger in the northwest of the mid-northern segment of the Longmenshan fault zone, and deformation amplitude decreased gradually from far field to near fault zone, and there was little deformation in fault zone. The east-west compression deformation was significant surrounding the southwestern segment of the Longmenshan fault zone, and strain accumulation rate was larger than that of mid-northern segment. Fault locking indicates nearly whole Longmenshan fault was locked before the earthquake except the source of the earthquake which was weakly locked, and a 20km width patch in southwestern segment between 12km to 22.5km depth was in creeping state. GPS baseline time series in northeast direction on large scale became compressive generally from 2005 in the North-South Seismic Belt, which reflects that relative compression deformation enhances. The cross-fault leveling data show that annual vertical change rate and deformation trend accumulation rate in the Longmenshan fault zone were little, which indicates that vertical activity near the fault was very weak and the fault was tightly locked. According to analyses of GPS and cross-fault leveling data before the Wenchuan earthquake, we consider that the Longmenshan fault is tightly locked from the surface to the deep, and the horizontal and vertical deformation are weak surrounding the fault in relatively small-scale crustal deformation. The process of weak deformation may be slow, and weak deformation area may be larger when large earthquake is coming. Continuous and slow compression deformation across eastern Qinghai-Tibetan Plateau before the earthquake provides dynamic support for strain accumulation in the Longmenshan fault zone in relative large-scale crustal deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号