首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water and energy fluxes are inextricably interlinked within the interface of the land surface and the atmosphere. In the regional earth system models, the lower boundary parameterization of land surface neglects lateral hydrological processes, which may inadequately depict the surface water and energy fluxes variations, thus affecting the simulated atmospheric system through land-atmosphere feedbacks. Therefore, the main objective of this study is to evaluate the hydrologically enhanced regional climate modelling in order to represent the diurnal cycle of surface energy fluxes in high spatial and temporal resolution. In this study, the Weather Research and Forecasting model (WRF) and coupled WRF Hydrological modelling system (WRF-Hydro) are applied in a high alpine catchment in Northeastern Tibetan Plateau, the headwater area of the Heihe River. By evaluating and intercomparing model results by both models, the role of lateral flow processes on the surface energy fluxes dynamics is investigated. The model evaluations suggest that both WRF and coupled WRF-Hydro reasonably represent the diurnal variations of the near-surface meteorological fields, surface energy fluxes and hourly partitioning of available energy. By incorporating additional lateral flow processes, the coupled WRF-Hydro simulates higher surface soil moisture over the mountainous area, resulting in increased latent heat flux and decreased sensible heat flux of around 20–50 W/m2 in their diurnal peak values during summertime, although the net radiation and ground heat fluxes remain almost unchanged. The simulation results show that the diurnal cycle of surface energy fluxes follows the local terrain and vegetation features. This highlights the importance of consideration of lateral flow processes over areas with heterogeneous terrain and land surfaces.  相似文献   

2.
Land surface process is of great importance in global climate change, moisture and heat exchange in the interface of the earth and atmosphere, human impacts on the environment and eco- system, etc. Soil freeze/thaw plays an important role in cold land surface processes. In this work the diurnal freeze/thaw effects on energy partition in the context of GAME/Tibet are studied. A sophisti- cated land surface model is developed, the particular aspect of which is its physical consideration of soil freeze/thaw and vapor flux. The simultaneous water and heat transfer soil sub-model not only reflects the water flow from unfrozen zone to frozen fringe in freezing/thawing soil, but also demon- strates the change of moisture and temperature field induced by vapor flux from high temperature zone to low temperature zone, which makes the model applicable for various circumstances. The modified Picard numerical method is employed to help with the water balance and convergence of the numerical scheme. Finally, the model is applied to analyze the diurnal energy and water cycle char- acteristics over the Tibetan Plateau using the Game/Tibet datasets observed in May and July of 1998. Heat and energy transfer simulation shows that: (i) There exists a negative feedback mechanism between soil freeze/thaw and soil temperature/ground heat flux; (ii) during freezing period all three heat fluxes do not vary apparently, in spite of the fact that the negative soil temperature is higher than that not considering soil freeze; (iii) during thawing period, ground heat flux increases, and sensible heat flux decreases, but latent heat flux does not change much; and (iv) during freezing period, soil temperature decreases, though ground heat flux increases.  相似文献   

3.
Jing Wang  Qiang Yu  Xuhui Lee 《水文研究》2007,21(18):2474-2492
Understanding the exchange processes of energy and carbon dioxide (CO2) in the soil–vegetation–atmosphere system is important for assessing the role of the terrestrial ecosystem in the global water and carbon cycle and in climate change. We present a soil–vegetation–atmosphere integrated model (ChinaAgrosys) for simulating energy, water and CO2 fluxes, crop growth and development, with ample supply of nutrients and in the absence of pests, diseases and weed damage. Furthermore, we test the hypotheses of whether there is any significant difference between simulations over different time steps. CO2, water and heat fluxes were estimated by the improving parameterization method of the coupled photosynthesis–stomatal conductance–transpiration model. Soil water evaporation and plant transpiration were calculated using a multilayer water and heat‐transfer model. Field experiments were conducted in the Yucheng Integrated Agricultural Experimental Station on the North China Plain. Daily weather and crop growth variables were observed during 1998–2001, and hourly weather variables and water and heat fluxes were measured using the eddy covariance method during 2002–2003. The results showed that the model could effectively simulate diurnal and seasonal changes of net radiation, sensible and latent heat flux, soil heat flux and CO2 fluxes. The processes of evapotranspiration, soil temperature and leaf area index agree well with the measured values. Midday depression of canopy photosynthesis could be simulated by assessing the diurnal change in canopy water potential. Moreover, the comparisons of simulated daily evapotranspiration and net ecosystem exchange (NEE) under different time steps indicated that time steps used by a model affect the simulated results. There is no significant difference between simulated evapotranspiration using the model under different time steps. However, simulated NEE produces large differences in the response to different time steps. Therefore, the accurate calculation of average absorbed photosynthetic active radiation is important for the scaling of the model from hourly steps to daily steps in simulating energy and CO2 flux exchanges between winter wheat and the atmosphere. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
本模式用以K半经验理论为基础的闭合方程组求解,引进了地形作用、动量、热量和水汽的侧向扩散和垂直湍流交换以及凝结加热等物理过程,其中湍流交换系数K是地表粗糙度、几何高度、大气稳定度及风速切变等因子的函数。本模式还考虑了山地、平原和水面在地形高度、地表粗糙度、辐射、蒸发及热交换等方面的差异,在下垫面上建立热平衡方程与边界层内控制方程耦合。将模式应用于太湖流域,计算得到的该流域边界层内温、压、湿、风的分布特征与实际情况相似,模式具有一定的实用性。  相似文献   

5.
陆面过程模式是气候模式和天气模式的核心组成部分之一.在土壤—植被—大气耦合模式(Soil-PlantAtmosphere Model,SPAM)的基础上,发展了新一代北京大学陆面过程模式PKULM(Peking University Land Model).本文首先介绍了PKULM的辐射传输、湍流输送、光合作用、土壤水热输送等过程的参数化方案;采用隐式迭代计算框架,发展并应用了一个快速的线性方程组求解算法,提高了模式计算稳定性;提出并使用了二分搜索算法计算气孔阻抗,避免了CLM(Community Land Model)等使用的迭代方法在干旱区不稳定的情况,提高了模式的适用性;采用水势为基础的土壤水分扩散方程,使模式能够模拟土壤饱和区的水分输送过程,为进一步与水文过程模式耦合奠定了基础;还发展了一个地表积水与径流过程的机理模型,提高了模式对地表水分平衡过程的模拟能力;最后,使用"中国西北干旱区陆—气相互作用观测试验"平凉站的资料对模式进行了检验并与NOAH(National Center for Environmental Prediction,Oregon State University,Air Force,and Hydrology Lab model)陆面过程模式的模拟结果进行了比较,结果表明PKULM能够较好地模拟西北半干旱区农田下垫面地气交换过程.  相似文献   

6.
Land-surface processes are part of the lower boundary conditions for the atmosphere. The schemes used in general circulation models (GCM) to represent this forcing are relatively simple but they play an important role in the simulation of climate. This paper compares three different land-surface schemes used in GCM. All were run with the same imposed atmospheric conditions in order to analyse the differences in the hydrological cycle. The intercomparison showed that simulated evaporation, runoff and soil moisture were different in all three cases. In order to get a better understanding of the mechanisms at work in the models, features from two of the schemes were included in the other scheme. With these modifications we were able to reduce the wide range between model results. We showed that the surface resistance and field capacity were essential parameters in determining the annual cycle of evaporation and that a representation of subgrid-scale variability of soil moisture had an important impact on runoff.  相似文献   

7.
The hydrological sensitivities to long-term climate change of a watershed in Eastern Canada were analysed using a deterministic watershed runoff model developed to simulate watershed acidification. This model was modified to study atmospheric change effects in the watershed. Water balance modelling techniques, modified for assessing climate effects, were developed and tested for a watershed using atmospheric change scenarios from both state of the art general circulation models and a series of hypothetical scenarios. The model computed daily surface, inter- and groundwater flows from the watershed. The moisture, infiltration and recharge rate are also computed in the soil reservoirs. The thirty years of simulated data can be used to evaluate the effects of climatic change on soil moisture, recharge rate and surface and subsurface flow systems. The interaction between surface and subsurface water is discussed in relation to climate change. These hydrological results raise the possibility of major environmental and socioeconomic difficulties and have significant implications for future water resource planning and management. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
Carbonates capping Neoproterozoic glacial deposits contain peculiar sedimentological features and geochemical anomalies ascribed to extraordinary environmental conditions in the snowball Earth aftermath. It is commonly assumed that post-snowball climate dominated by CO2 partial pressures several hundred times greater than modern levels, would be characterized by extreme temperatures, a vigorous hydrological cycle, and associated high continental weathering rates. However, the climate in the aftermath of a global glaciation has never been rigorously modelled. Here, we use a hierarchy of numerical models, from an atmospheric general circulation model to a mechanistic model describing continental weathering processes, to explore characteristics of the Earth system during the supergreenhouse climate following a snowball glaciation. These models suggest that the hydrological cycle intensifies only moderately in response to the elevated greenhouse. Indeed, constraints imposed by the surface energy budget sharply limit global mean evaporation once the temperature has warmed sufficiently that the evaporation approaches the total absorbed solar radiation. Even at 400 times the present day pressure of atmospheric CO2, continental runoff is only 1.2 times the modern runoff. Under these conditions and accounting for the grinding of the continental surface by the ice sheet during the snowball event, the simulated maximum discharge of dissolved elements from continental weathering into the ocean is approximately 10 times greater than the modern flux. Consequently, it takes millions of years for the silicate weathering cycle to reduce post-snowball CO2 levels to background Neoproterozoic levels. Regarding the origin of the cap dolostones, we show that continental weathering alone does not supply enough cations during the snowball melting phase to account for their observed volume.  相似文献   

9.
The need to understand and simulate hydrological phenomena and their interactions, and the impact of anthropogenic and climate changes on natural environments have promoted the study of evaporation from bare soils in arid climates. In closed Altiplano basins, such as those encountered in arid and hyper arid basins in northern Chile, evaporation from shallow groundwater is the main source of aquifer depletion, and thus, its study is crucial for water resources management. The objective of this work is to understand the mechanisms of evaporation in saline soils with shallow water tables, in order to better quantify evaporation fluxes and improve our understanding of the water balance in these regions. To achieve this objective, a model that couples fluid flow with heat transfer was developed and calibrated using column experiments with saline soils from the Huasco salt flat basin, Chile. The model enables determination of both liquid and water vapour fluxes, as well as the location of the evaporation front. Experimental results showed that salt transport inside the soil profile modified the water retention curve, highlighting the importance of including salt transport when modelling the evaporation processes in these soils. Indeed, model simulations only agreed with the experimental data when the effect of salt transport on water retention curves was taken into account. Model results also showed that the evaporation front is closer to the soil surface as the water table depth reduces. Therefore, the model allows determining the groundwater level depth that results in disconnection of liquid fluxes in the vadose zone. A sensitivity analysis allowed understanding the effect of water‐flux enhancements mechanisms on soil evaporation. The results presented in this study are important as they allow quantifying the evaporation that occurs in bare soils from Altiplano basins, which is typically the main water discharge in these closed basins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Long‐term data from the Hubbard Brook Experimental Forest in New Hampshire show that air temperature has increased by about 1 °C over the last half century. The warmer climate has caused significant declines in snow depth, snow water equivalent and snow cover duration. Paradoxically, it has been suggested that warmer air temperatures may result in colder soils and more soil frost, as warming leads to a reduction in snow cover insulating soils during winter. Hubbard Brook has one of the longest records of direct field measurements of soil frost in the United States. Historical records show no long‐term trends in maximum annual frost depth, which is possibly confounded by high interannual variability and infrequency of major soil frost events. As a complement to field measurements, soil frost can be modelled reliably using knowledge of the physics of energy and water transfer. We simulated soil freezing and thawing to the year 2100 using a soil energy and water balance model driven by statistically downscaled climate change projections from three atmosphere‐ocean general circulation models under two emission scenarios. Results indicated no major changes in maximum annual frost depth and only a slight increase in number of freeze–thaw events. The most important change suggested by the model is a decline in the number of days with soil frost, stemming from a concurrent decline in the number of snow‐covered days. This shortening of the frost‐covered period has important implications for forest ecosystem processes such as tree phenology and growth, hydrological flowpaths during winter, and biogeochemical processes in soil. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

11.
沙漠陆面过程参数化与模拟   总被引:4,自引:2,他引:2       下载免费PDF全文
郑辉  刘树华 《地球物理学报》2013,56(7):2207-2217
沙漠地区植被稀疏、干旱少雨,其陆面物理过程具有与全球其它地区显著不同的特点.本文利用巴丹吉林沙漠观测资料,分析和计算了地表反照率、比辐射率、粗糙度和土壤热容量、热传导系数等关键陆面过程参数,建立了适合于沙漠地区的陆面过程模式DLSM (Desert Land Surface Model),并与NOAH陆面过程模式的模拟结果和观测资料进行了比较.结果表明:巴丹吉林沙漠地表反照率为0.273,比辐射率为0.950,地表粗糙度为1.55×10-3 m,土壤热容量和热扩散系数分别为1.08×106 J·m-3·K-1和3.34×10-7 m2·s.辐射传输、感热输送和土壤热传导过程是影响沙漠地区地表能量平衡的主要物理过程.通过对这三种过程的准确模拟检验,DLSM能够较准确地模拟巴丹吉林沙漠地气能量交换特征;短波辐射、长波辐射和感热通量的模拟结果与观测值间的标准差分别为7.98,6.14,33.9 W·m-2,与NOAH陆面过程模式的7.98,7.72,46.6 W·m-2的结果接近.地表反照率是沙漠地区最重要的陆面过程参数,地表反照率增大5%,向上短波辐射通量随之增加5%,感热通量则减小2.8%.本文研究结果对丰富陆面过程参数化方案,改进全球陆面过程模式、气候模式具有参考意义.  相似文献   

12.
This paper presents measurements of the energy balance (radiation, sensible heat flux, evaporation) from a sub‐arctic hillside in northern Finland for a summer season. Comparisons are also made with a nearby wetland site. The hillslope measurements show an equal partition of the radiant energy into sensible and latent heat flux. The evaporative ratio of just over one half was remarkably constant throughout the season, despite very large day‐to‐day and diurnal variations of temperature, humidity deficit and radiation input. This conservative behaviour of the evaporation was caused by a strong rise in effective surface resistance to evaporation with increasing vapour pressure deficit. This suggests a strong physiological control on the evaporation, with stomata closing at times of high evaporative demand. There was no obvious impact of soil‐water stress on the evaporation. However, a comparison with the evaporation measured at a nearby mire site in 1997 suggests that the mire has a significantly lower surface resistance, even when the impact of a significantly lower humidity deficit in the earlier year is taken into account. The measurements are used to test, off‐line, the performance of MOSES (Meteorological Office Surface Exchange Scheme), a simple, but comprehensive, land surface model. The sensitivity of the energy exchanges to the thermal properties of the top soil layer (a surrogate for the upper soil/vegetation layer) is investigated with the use of the model. It is found that the evaporation is insensitive to these properties; they do, however, influence the partition of energy between the sensible heat flux and the ground heat flux (and hence the soil temperatures). It is suggested that the model needs to represent the thermal properties of the canopy more realistically. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
In the context of climate change and variability, there is considerable interest in how large scale climate indicators influence regional precipitation occurrence and its seasonality. Seasonal and longer climate projections from coupled ocean–atmosphere models need to be downscaled to regional levels for hydrologic applications, and the identification of appropriate state variables from such models that can best inform this process is also of direct interest. Here, a Non‐Homogeneous Hidden Markov Model (NHMM) for downscaling daily rainfall is developed for the Agro‐Pontino Plain, a coastal reclamation region very vulnerable to changes of hydrological cycle. The NHMM, through a set of atmospheric predictors, provides the link between large scale meteorological features and local rainfall patterns. Atmospheric data from the NCEP/NCAR archive and 56‐years record (1951–2004) of daily rainfall measurements from 7 stations in Agro‐Pontino Plain are analyzed. A number of validation tests are carried out, in order to: 1) identify the best set of atmospheric predictors to model local rainfall; 2) evaluate the model performance to capture realistically relevant rainfall attributes as the inter‐annual and seasonal variability, as well as average and extreme rainfall patterns. Validation tests show that the best set of atmospheric predictors are the following: mean sea level pressure, temperature at 1000 hPa, meridional and zonal wind at 850 hPa and precipitable water, from 20°N to 80°N of latitude and from 80°W to 60°E of longitude. Furthermore, the validation tests show that the rainfall attributes are simulated realistically and accurately. The capability of the NHMM to be used as a forecasting tool to quantify changes of rainfall patterns forced by alteration of atmospheric circulation under climate change and variability scenarios is discussed.  相似文献   

14.
本模式用以K半经验理论为基础的闭合方程组求解,引进了地形作用、动量、热量和水汽的侧向扩散和垂直湍流交换以及凝结加热等物理过程,其中湍流交换系数K是地表粗糙度、几何高度、大气稳定度及风速切变等因子的函数。本模式还考虑了山地、平原和水面在地形高度、地表粗糙度、辐射、蒸发及热交换等方面的差异,在下垫面上建立热平衡方程与边界层内控制方程耦合。将模式应用于太湖流域,计算得到的该流域边界层内温、压、湿、风的分布特征与实际情况相似,模式具有一定的实用性。  相似文献   

15.
Models for water transfer in the crop–soil system are key components of agro-hydrological models for irrigation, fertilizer and pesticide practices. Many of the hydrological models for water transfer in the crop–soil system are either too approximate due to oversimplified algorithms or employ complex numerical schemes. In this paper we developed a simple and sufficiently accurate algorithm which can be easily adopted in agro-hydrological models for the simulation of water dynamics. We used a dual crop coefficient approach proposed by the FAO for estimating potential evaporation and transpiration, and a dynamic model for calculating relative root length distribution on a daily basis. In a small time step of 0.001 d, we implemented algorithms separately for actual evaporation, root water uptake and soil water content redistribution by decoupling these processes. The Richards equation describing soil water movement was solved using an integration strategy over the soil layers instead of complex numerical schemes. This drastically simplified the procedures of modeling soil water and led to much shorter computer codes. The validity of the proposed model was tested against data from field experiments on two contrasting soils cropped with wheat. Good agreement was achieved between measurement and simulation of soil water content in various depths collected at intervals during crop growth. This indicates that the model is satisfactory in simulating water transfer in the crop–soil system, and therefore can reliably be adopted in agro-hydrological models. Finally we demonstrated how the developed model could be used to study the effect of changes in the environment such as lowering the groundwater table caused by the construction of a motorway on crop transpiration.  相似文献   

16.
We used the new process‐based, tracer‐aided ecohydrological model EcH2O‐iso to assess the effects of vegetation cover on water balance partitioning and associated flux ages under temperate deciduous beech forest (F) and grassland (G) at an intensively monitored site in Northern Germany. Unique, multicriteria calibration, based on measured components of energy balance, hydrological function and biomass accumulation, resulted in good simulations reproducing measured soil surface temperatures, soil water content, transpiration, and biomass production. Model results showed the forest “used” more water than the grassland; of 620 mm average annual precipitation, losses were higher through interception (29% under F, 16% for G) and combined soil evaporation and transpiration (59% F, 47% G). Consequently, groundwater (GW) recharge was enhanced under grassland at 37% (~225 mm) of precipitation compared with 12% (~73 mm) for forest. The model tracked the ages of water in different storage compartments and associated fluxes. In shallow soil horizons, the average ages of soil water fluxes and evaporation were similar in both plots (~1.5 months), though transpiration and GW recharge were older under forest (~6 months compared with ~3 months for transpiration, and ~12 months compared with ~10 months for GW). Flux tracking using measured chloride data as a conservative tracer provided independent support for the modelling results, though highlighted effects of uncertainties in forest partitioning of evaporation and transpiration. By tracking storage—flux—age interactions under different land covers, EcH2O‐iso could quantify the effects of vegetation on water partitioning and age distributions. Given the likelihood of drier, warmer summers, such models can help assess the implications of land use for water resource availability to inform debates over building landscape resilience to climate change. Better conceptualization of soil water mixing processes and improved calibration data on leaf area index and root distribution appear obvious respective modelling and data needs for improved simulations.  相似文献   

17.
依据边界层梯度输送理论和能量守恒原理分析了蒸发皿蒸发量的物理意义,蒸发皿蒸发量是多环境因子共同非线性相互作用的结果,并利用我国有长期太阳辐射观测的62个常规气象站观测资料,通过蒸发皿蒸发量与环境气象因子的相关分析对其进行了验证. 分析了近40年蒸发皿蒸发量和环境气象因子的变化趋势,分析结果也表明只利用单个环境因子的变化来解释蒸发皿蒸发量的气候变化会产生偏颇,譬如将蒸发皿蒸发量的逐年减少归因于地表接收的太阳辐射减少的解释在中国东部比在中国西部较合理. 分析1983~2001年间国际卫星云气候计划观测的资料得出,我国大部分地区的总云量保持微小的减少趋势而总云水路径处于明显的增加趋势,这表明云变得更不透明了,它的物理属性发生了明显的变化;预示着大气可降水量有逐年增加的趋势, 地气系统变得更湿润. 结合水循环过程,利用大气环流模式用数值方法证明地气系统的水汽变化能引起陆地近地层大气相对湿度、地表接收的太阳总辐射和地表潜在蒸发量的明显变化.  相似文献   

18.
水面蒸发与散热系数公式研究(一)   总被引:16,自引:1,他引:15  
根据自1976年以来全国水面蒸发与散热研究协作组在我国各典型地区的原体与室内实验资料和大量水文站历史资料,通过理论分析和统计检验,确定丁影响水面蒸发的诸因子及其非线性相互作用,引入了新的无量纲参数(w_e、Pv、Pe)和公式结构,用实测资料统计确定厂公式中的常系数,得到了用开敞湖面一般水文气象资料计算逐日蒸发和散热系数的公式。经全国各典型气候带内各季节湖泊(水库)和受热污染水体上原体观测和室内专题实验共1860组口平均资料检验,公式的精度高于现有其他公式。全文分两部分,这是第一部分,内容包括:影响水面蒸发的土要无量纲参数;感热输送和大气饱和度对蒸发影响的修正;水面蒸发计算公式的结构及其经验系数。  相似文献   

19.
To develop geosciences quantification and multi-dimensional researches will be an inevitable trend in the 21st century. The interaction between the land surface and the atmosphere not only serves as an important component in geosciences quantification, bu…  相似文献   

20.
ABSTRACT

Rainfall events largely control hydrological processes occurring on and in the ground, but the performance of climate models in reproducing rainfall events has not been investigated enough to guide selection among the models when making hydrological projections. We proposed to compare the durations, intensities, and pause periods, as well as depths of rainfall events when assessing the accuracy of general circulation models (GCMs) in reproducing the hydrological characteristics of observed rainfall. We also compared the sizes of design storm events and the frequency and severity of drought to demonstrate the consequences of GCM selection. The results show that rainfall and extreme hydrological event projections could significantly vary depending on climate model selection and weather stations, suggesting the need for a careful and comprehensive evaluation of GCM in the hydrological analysis of climate change. The proposed methods are expected to help to improve the accuracy of future hydrological projections for water resources planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号