首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of elevated CO2 on vegetation dynamics and the hydrological cycle have been widely studied at the site level. However, quantitative assessments of these effects on a regional scale remain a challenge. We conducted numerical simulations to predict the possible responses of vegetation and the hydrological cycle in the Sino-Mongolia arid and semi-arid region (SMASR) to doubled CO2 and its associated climate change using the Community Earth System Model in tandem with a dynamic global vegetation model. The results showed that the doubled CO2 had a positive effect on the leaf area index of the SMASR, but its associated climate change exerted a negative effect in most parts of the SMASR. Although climate change had a weak negative effect on ground runoff at the regional scale, a 4.74 mm increase was predicted under the combined effect of doubled CO2 and climate change, largely due to the positive effect of doubled CO2. Spatially, the evident increase in ground runoff, which primarily occurred in the southeastern part of the SMASR, resulted from decreased ground evaporation and canopy transpiration under the doubled CO2 condition. A negative effect was predicted in the central west as a result of increased temperature and a changed precipitation under doubled CO2. These findings implied that the condition of water resources would be improved slightly under a doubled CO2 condition, whereas there would be a larger spatial heterogeneity in relation to different sensitivities of vegetation and hydrological variables to doubled CO2 and associated climate change.  相似文献   

2.
The eruptions of the Soufrière Hills volcano on Montserrat (Lesser Antilles) from 1995 to present have draped parts of the island in fresh volcaniclastic deposits. Volcanic islands such as Montserrat are an important component of global weathering fluxes, due to high relief and runoff and high chemical and physical weathering rates of fresh volcaniclastic material. We examine the impact of the recent volcanism on the geochemistry of pre-existing hydrological systems and demonstrate that the initial chemical weathering yield of fresh volcanic material is higher than that from older deposits within the Lesser Antilles arc. The silicate weathering may have consumed 1.3% of the early CO2 emissions from the Soufrière Hills volcano. In contrast, extinct volcanic edifices such as the Centre Hills in central Montserrat are a net sink for atmospheric CO2 due to continued elevated weathering rates relative to continental silicate rock weathering. The role of an arc volcano as a source or sink for atmospheric CO2 is therefore critically dependent on the stage it occupies in its life cycle, changing from a net source to a net sink as the eruptive activity wanes. While the onset of the eruption has had a profound effect on the groundwater around the Soufrière Hills center, the geochemistry of springs in the Centre Hills 5 km to the north appear unaffected by the recent volcanism. This has implications for the potential risk, or lack thereof, of contamination of potable water supplies for the island’s inhabitants.  相似文献   

3.
Precambrian glaciations appear to be confined to two periods, one in the early Proterozoic between 2.5 and 2 Gyears BP (Before Present) and the other in the late Proterozoic between 1 and 0.57 Gyear BP. Possible reasons for these broad features of the Precambrian climate have been investigated using a simple model for the mean surface temperature of the Earth that partially compensates for the evolution of the Sun by variations in the atmospheric CO2 content caused by outgassing, the formation of continents and the weathering of the Earth’s land surface. It is shown that the model can explain the main changes in the Precambrian climate if the early Proterozoic glaciations were caused by a major episode of continental land building commencing about 3 Gyears BP while the late Proterozoic glaciations resulted from biologicallyenhanced weathering of the land surface due to the proliferation of life forms in the transition from the Proterozoic to the Phanerozoic that began about 1 Gyear BP.  相似文献   

4.
Eiichi Tajika 《Island Arc》1999,8(2):293-303
The carbon cycle and climate change during the Cretaceous are reconstructed by using a carbon cycle model, and discussed. The model takes into account the effects of the enhanced magma eruption and organic carbon burial rates, both of which characterize the carbon cycle during the Cretaceous. The result for the CO2 variation is roughly consistent with the pattern of paleoclimate change inferred from the geological record. The CO2 level during the mid-Cretaceous is estimated to be 4–5 times the present atmospheric level, corresponding to a surface temperature of 20–21°C. The warm, equable Cretaceous resulted from the effects of tectonic forcing such as enhanced CO2 degassing, although the enhanced organic carbon burial has a tendency to decrease the CO2 level. The organic carbon burial rate during the Cretaceous is generally larger than those for the Cenozoic, and is characterized by three major peaks (~ 1.5–1.8 times the present-day value) corresponding to the major oceanic anoxic events. In the case for the extensive mantle plume degassing, although the CO2 levels are only 10% higher than those for the standard case during 120–100 Ma, the causes for the enhanced CO2 levels would be quite different. If the globally averaged surface temperature had increased due to paleogeographic forcing effects, the greenhouse effect of CO2 (and thus the CO2 level) should be lower than the values estimated for the standard case. If the CO2 levels are similar to, but the surface temperature is higher than, those for the standard case, either the parameter β (an influence of the Himalayas–Tibetan Plateau on the global weathering today) may be unreasonably large or the dependence of the silicate weathering rate on the CO2 partial pressure and the surface temperature should be much weaker than those previously proposed.  相似文献   

5.
A vast sheet of mature quartz sand blanketed north Africa and Arabia from the Atlantic coast to the Persian Gulf in Cambro–Ordovician times. U–Pb geochronology of a representative section of Cambrian sandstone in southern Israel shows that these sediments are dominated by 550–650 Ma detrital zircons derived from Neoproterozoic Pan-African basement. The short time lag between magmatic consolidation of a Pan-African source and deposition of its erosional products indicates that, despite their significant mineralogical maturity, the voluminous quartz-rich sandstones on the northern margin of Gondwana are essentially first-cycle sediments.

Mass production of these voluminous first-cycle quartz-rich sandstones resulted from widespread chemical weathering of the Pan-African continental basement. We suggest that conditions favoring silicate weathering, particularly a warm and humid climate, low relief and low sedimentation rates prevailed over large tracts of Gondwana in the aftermath of the Pan-African orogeny. An unusually corrosive Cambro–Ordovician atmosphere and humid climate enhanced chemical weathering on the vegetation-free landscape. We infer that late Neoproterozoic–Cambro–Ordovician atmospheric pCO2 rose as a consequence of widespread late Neoproterozoic volcanism, followed by an uptake of CO2 by chemical weathering to produce the Cambro–Ordovician sandstone as a negative feedback.  相似文献   


6.
梁新歌  王涵  赵爽  宋春桥 《湖泊科学》2023,35(6):2111-2122
在全球气候变暖和极端气候事件增加的背景下,流域水文循环过程受到的影响越来越强烈,导致湖泊水位变化表现出复杂的时空特征。而泛北极地区是地球上湖泊数量与面积分布最为集中的区域之一,该地区湖泊对气候变化响应非常敏感。因此,了解这些湖泊近期水文变化特征十分必要。本研究共搜集了36个泛北极大型湖泊(>500 km2)基于遥感或站点观测的近20年水位数据,分析其时空变化特征。本文使用线性回归模型来估算湖泊水位的变化趋势,进而利用皮尔逊相关分析了其主要水文影响变量和大气环流机制,并运用Mann-Kendall突变检验法探讨了水位突变的原因。结果表明,泛北极湖泊的水位整体上呈现不同程度上升(平均速率为0.013 m/a),有23个(64%)湖泊的水位呈上升趋势;研究湖泊中有10个通过90%统计显著性检验。其中,水位上升速率最大的湖泊是位于哈萨克斯坦的腾吉兹湖,上升速率为0.078 m/a。泛北极湖泊水位的波动主要与径流有关,有19个(53%)湖泊的水位波动与径流的增加更为相关;相比而言,位于亚洲的极地湖泊水位的上升与流域蒸发的降低显著相关,尤其是库苏古尔湖。从区域大气环流影响来看,泛北极湖泊水位变化主要与厄尔尼诺-南方涛动有关,其次是北极涛动和北大西洋涛动。本研究有助于加深对泛北极湖泊近20年水位变化规律及气候影响特征的科学理解。  相似文献   

7.
Direct evidence of the feedback between climate and weathering   总被引:1,自引:0,他引:1  
Long-term climate moderation is commonly attributed to chemical weathering; the higher the temperature and precipitation the faster the weathering rate. Weathering releases divalent cations to the ocean via riverine transport where they promote the drawdown of CO2 from the atmosphere by the precipitation and subsequent burial of carbonate minerals. To test this widely-held hypothesis, we performed a field study determining the weathering rates of 8 nearly pristine north-eastern Iceland river catchments with varying glacial cover over 44 years. The mean annual temperature and annual precipitation of these catchments varied by 3.2 to 4.5 °C and 80 to 530%, respectively during the study period. Statistically significant linear positive correlations were found between mean annual temperature and chemical weathering in all 8 catchments and between mean annual temperature and both mechanical weathering and runoff in 7 of the 8 catchments. For each degree of temperature increase, the runoff, mechanical weathering flux, and chemical weathering fluxes in these catchments are found to increase from 6 to 16%, 8 to 30%, and 4 to 14% respectively, depending on the catchment. In contrast, annual precipitation is less related to the measured fluxes; statistically significant correlations between annual precipitation and runoff, mechanical weathering, and chemical weathering were found for 3 of the least glaciated catchments. Mechanical and chemical weathering increased with time in all catchments over the 44 year period. These correlations were statistically significant for only 2 of the 8 catchments due to scatter in corresponding annual runoff and average annual temperature versus time plots. Taken together, these results 1) demonstrate a significant feedback between climate and Earth surface weathering, and 2) suggest that weathering rates are currently increasing with time due to global warming.  相似文献   

8.
The interrelationship between the cryosphere and the climate is not always operating on Earth over a scale of billions or millions of years. Indeed, most of the time, the Earth is regulated at temperatures such that no ice sheet exists. Nevertheless, it is very fruitful to understand the conditions where and when ice sheets were triggered during the Earth??s history. This paper deals with the paleoclimate and the cryosphere in the last 4.6 Ga and explains the different processes that make the climate of the first 4 billion years warm despite the weaker solar luminosity. We also describe the more recent evolution in the last 65 million years when a global decrease in atmospheric CO2 from around 4 PAL to 1 PAL was associated with a global cooling (1 PAL present atmospheric level = 280 ppm). It is in this context that the Quaternary occurred characterized by low atmospheric CO2 and the presence of two perennial ice sheets in Greenland and Antarctica. The last million years are certainly the most documented since direct and reliable CO2 measurements are available. They are characterized by a complex climate/cryosphere dynamics leading to oscillations between long glacial periods with four ice sheets and shorter ones with only two ice sheets (interglacial). We are currently living in one of those interglacials, generally associated with a CO2 level of 280 ppm. Presently, anthropogenic activities are seriously perturbing the carbon cycle and the atmospheric CO2 content and therefore the climate. The last but not least question raised in this paper is to investigate whether the anthropogenic perturbation may lead to a melting of the ice sheets.  相似文献   

9.
The present study employs a method for analysis of the sulfur isotopic composition of trace sulfate extracted from carbonates collected in Namibia in order to document secular variations in the sulfur isotopic composition of Neoproterozoic oceanic sulfate and to assess variations in the sulfur cycle that may have accompanied profound climatic events that have been described as the snowball Earth hypothesis. The carbonates in the Otavi Group of Northwest Namibia contain 3-295 ppm sulfate. Positive excursions, to a high of 40‰ (CDT), occur above the lower (Chuos Formation) and upper (Ghaub Formation) glacial intervals in the Rasthof and Maieberg cap carbonates, respectively. Positive excursions at the top of the Rasthof Formation (reaching 51‰) and within the overlying Gruis Formation (34‰) do not appear to correspond to glaciation. The δ34Ssulfate values within the Ombaatjie Formation exhibit shifts over relatively short stratigraphic intervals (tens of meters), varying between ∼15 and 25‰. Cap carbonates from Australia exhibit positive δ34Spyrite trends with amplitudes similar to those of Namibian δ34Ssulfate, although, more data are necessary to firmly establish these δ34S trends as global in nature. δ34Ssulfate excursions found in Namibian cap carbonates are consistent with the snowball Earth hypothesis in that they appear to reflect nearly complete reduction of sulfate in an isolated, anoxic global ocean, although, there are other mechanisms that may have facilitated these large shifts in δ34Ssulfate. Regardless, the low sulfate concentrations in Otavi carbonates, the high amplitude variability of the δ34Ssulfate curve, and the apparently full reduction of sulfate (as implied from δ34Spyrite data), even in strata low in Corg, suggest that Neoproterozoic oceanic sulfate concentrations were much lower than modern values. Additionally, the buildup of ferrous iron and banded-iron formations during the Sturtian glacial event would indicate that Fe supply exceeded sulfide availability during the glacials and/or that all sulfide was fixed and buried. This could be construed as further evidence in support of low oceanic sulfate (and sulfide) at this time.  相似文献   

10.
A CO2-weathering model has been used to explore the possible evolution of the Earth’s climate as the Sun steadily brightened throughout geologic time. The results of the model calculations can be described in terms of three, qualitatively different, “Megaclimates”. Mega-climate 1 resulted from a period of rapid outgassing in the early Archean, with high, but declining, temperatures caused by the small weathering rates on a largely water-covered planet. Mega-climate 2 began about 3 Gyear ago as major continental land masses developed, increasing the weathering rate in the early Proterozoic and thereby depleting the atmospheric CO2 concentration. This process produced the first Precambrian glaciations about 2.3 Gyear ago. During Mega-climate 2, evolutionary biological processes increased the surface weatherability in incremental steps and plate tectonics modulated the CO2 outgassing rate with an estimated period of 150 Myear (approximately one-half the period for the formation and breakup of super continents). Throughout Mega-climate 2 the surface temperature was controlled by variations in the atmospheric CO2 level allowing transitions between glacial and non-glacial conditions. The results of the model for Mega-climate 2 are in agreement with the occurrence (and absence) of glaciations in the geologic record. Extending the model to the future suggests that CO2 control of the Earth’s temperature will no longer be able to compensate for a solar flux that continues to increase. The present level of atmospheric CO2 is so small that further reduction in CO2 cannot prevent the Earth from experiencing Mega-climate 3 with steadily increasing surface temperatures caused by the continued brightening of the Sun. During Mega-climate 3, the main danger to the biosphere would come not from an increasing temperature but from a decreasing (rather than an increasing) CO2 level which could, in time, fall below 0.5 PAL, causing serious damage to the biosphere. Fortunately, the rates of change due to solar brightening are slow enough that Mega-climate 3 appears to pose no threat to the biosphere for the next 0.5-2 Gyear.  相似文献   

11.
Land-surface processes are part of the lower boundary conditions for the atmosphere. The schemes used in general circulation models (GCM) to represent this forcing are relatively simple but they play an important role in the simulation of climate. This paper compares three different land-surface schemes used in GCM. All were run with the same imposed atmospheric conditions in order to analyse the differences in the hydrological cycle. The intercomparison showed that simulated evaporation, runoff and soil moisture were different in all three cases. In order to get a better understanding of the mechanisms at work in the models, features from two of the schemes were included in the other scheme. With these modifications we were able to reduce the wide range between model results. We showed that the surface resistance and field capacity were essential parameters in determining the annual cycle of evaporation and that a representation of subgrid-scale variability of soil moisture had an important impact on runoff.  相似文献   

12.
粤东五华河流域的化学风化与CO2吸收   总被引:1,自引:1,他引:0  
基于对粤东五华河干流和支流水体的物理、化学组成测试数据,应用质量平衡法和相关分析法探讨湿热山地丘陵地区岩石化学风化过程对大气CO2的吸收.结果表明:五华河水体的总溶解性固体含量(77.11 mg/L)接近于世界河流的平均值(65 mg/L);离子组成以Ca2+、Na+和HCO3-为主,可溶性Si次之.五华河流域化学径流组成主要源自硅酸盐矿物化学风化过程的贡献,碳酸盐矿物的贡献较少;大气和土壤CO2是流域内岩石化学风化的主要侵蚀介质.与同一气候带其他河流相比较,五华河流域岩石化学风化过程对大气CO2的吸收通量(2.14×105mol/(km2·a))较低,这主要是由于流域内缺乏碳酸盐岩所导致.  相似文献   

13.
Abstract

Global climate change can be reproduced in detail by using three-dimensional general circulation models (GCMs). However, such complex models require super-computers and extensive hours of computational time for a single attempt at reproducing long term climate change. An alternative approach is to make simplifying assumptions that retain the essential physics for the desired simulation. Energy balance and Radiative-convective models are examples of such models. The model in this study follows the simplified approach using physics-based climate processes as well as interactions between atmospheric and hydrological processes. The vertically and latitudinally averaged mean temperature and mean water vapour content between 30°N-50°N latitudes are considered as atmospheric state variables while soil and sea temperatures and water storage amount are considered for describing the behaviour of the hydrological system. Temperatures in both the atmosphere and ground are calculated by a thermal energy equation that considers the physically-based processes of shortwave radiation, longwave radiation, sensible heat flux, and latent heat flux. Precipitation and evaporation processes transport moisture between the atmosphere and ground. In this study, the radiation parameterization of the simplified climate model is tested in the investigation of the various effects of global warming due to doubling and quadrupling of CO2. Changes of temperature, soil water content, evaporation rate and precipitation rate are investigated by numerical experiments. The simplified climate model provides acceptable simulation of climate change and holds promise for practical investigations such as the interactions of physical processes in the evolution of drought phenomena.  相似文献   

14.
利用长江上游最近30年(66个测站)蒸发皿蒸发量和最近50年(90个测站)的7种气象要素,分析了蒸发皿蒸发量的区域变化趋势和影响蒸发皿蒸发量变化的因素;针对7个水文站的年径流量变化,探讨了蒸发皿蒸发量变化后对水分循环的影响.结果表明,长江上游蒸发皿蒸发量的变化可以划分为三个分区,研究区域东西两侧(青藏高原和大巴山一带)为显著减少区,分别命名为RⅠ和RⅡ,中间(云贵高原北部到黄土高原南缘以及由二者包围的四川盆地一带)为显著增大区,命名为RⅢ区.影响区域蒸发皿蒸发量变化的原因各有不同,青藏高原一带(RⅠ区)蒸发皿蒸发量减少的原因可归结于太阳辐射强度和风动力扰动减弱所致.大巴山一带(RⅡ区)减少原因是太阳辐射强度、风动力扰动强度、湿度条件都在显著下降所引起的.云贵高原到四川盆地一带(RⅢ区)蒸发皿蒸发量增加是环境气温强烈升高,导致其上空大气水汽含量显著减少,大气很干燥,引发蒸发过程加强所致.蒸发皿蒸发量发生变化的直接后果就是导致水分循环强弱发生变化,对于RⅠ区,尽管蒸发皿蒸发量减少,由于降水量和径流量增加的作用,这一区域的水分循环有所加强.在RⅡ区,降水量、径流量和蒸发量都在减少,因此RⅡ区水分循环显著减弱.在RⅢ区,降水量和径流量同时减少,而蒸发量增大,水量消耗增大,因此RⅢ区水分循环有减弱趋势.  相似文献   

15.
The ecosystem services provided by forests modulate runoff generation processes, nutrient cycling and water and energy exchange between soils, vegetation and atmosphere. Increasing atmospheric CO2 affects many linked aspects of forest and catchment function in ways we do not adequately understand. Global levels of atmospheric CO2 will be around 40% higher in 2050 than current levels, yet estimates of how water and solute fluxes in forested catchments will respond to increased CO2 are highly uncertain. The Free Air CO2 Enrichment (FACE) facility of the University of Birmingham's Institute of Forest Research (BIFoR) is the only FACE in mature deciduous forest. The site specializes in fundamental studies of the response of whole ecosystem patches of mature, deciduous, temperate woodland to elevated CO2 (eCO2). Here, we describe a dataset of hydrological parameters – seven weather parameters at each of three heights and four locations, shallow soil moisture and temperature, stream hydrology and CO2 enrichment – retrieved at high frequency from the BIFoR FACE catchment.  相似文献   

16.
Hydrological model sensitivity to climate change can be defined as the response of a particular hydrological model to a known quantum of climate change. This paper estimates the hydrological sensitivity, measured as the percentage change in mean annual runoff, of two lumped parameter rainfall-runoff models, SIMHYD and AWBM and an empirical model, Zhang01, to changes in rainfall and potential evaporation. These changes are estimated for 22 Australian catchments covering a range of climates, from cool temperate to tropical and moist to arid. The results show that the models display different sensitivities to both rainfall and potential evaporation changes. The SIMHYD, AWBM and Zhang01 models show mean sensitivities of 2.4%, 2.5% and 2.1% change in mean annual flow for every 1% change in mean annual rainfall, respectively. All rainfall sensitivities have a lower limit of 1.8% and show upper limits of 4.1%, 3.4% and 2.5%, respectively. The results for potential evaporation change are −0.5%, −0.8% and −1.0% for every 1% increase in mean annual potential evaporation, respectively, with changes rainfall being approximately 3–5 times more sensitive than changes in potential evaporation for each 1% change in climate. Despite these differences, the results show similar correlations for several catchment characteristics. The most significant relationship is between percent change in annual rainfall and potential evaporation to the catchment runoff coefficient. The sensitivity of both A and B factors decreases with an increasing runoff coefficient, as does the uncertainty in this relationship. The results suggest that a first-order relationship can be used to give a rough estimate of changes in runoff using estimates of change in rainfall and potential evaporation representing small to modest changes in climate. Further work will develop these methods further, by investigating other regions and changes on the subannual scale.  相似文献   

17.
Wetlands cover at least 6 % of the Earth’s surface. They play a key role in hydrological and biogeochemical cycles, harbour a large part of the world’s biodiversity, and provide multiple services to humankind. However, pressure in the form of land reclamation, intense resource exploitation, changes in hydrology, and pollution threaten wetlands on all continents. Depending on the region, 30–90 % of the world’s wetlands have already been destroyed or strongly modified in many countries with no sign of abatement. Climate change scenarios predict additional stresses on wetlands, mainly because of changes in hydrology, temperature increases, and a rise in sea level. Yet, intact wetlands play a key role as buffers in the hydrological cycle and as sinks for organic carbon, counteracting the effects of the increase in atmospheric CO2. Eight chapters comprising this volume of Aquatic Sciences analyze the current ecological situation and the use of the wetlands in major regions of the world in the context of global climate change. This final chapter provides a synthesis of the findings and recommendations for the sustainable use and protection of these important ecosystems.  相似文献   

18.
Potential hydrological impacts of climate change on long‐term water balances were analysed for Harp Lake and its catchment. Harp Lake is located in the boreal ecozone of Ontario, Canada. Two climate change scenarios were used. One was based on extrapolation of long‐term trends of monthly temperature and precipitation from a 129‐year data record, and another was based on a Canadian general circulation model (GCM) predictions. A monthly water balance model was calibrated using 26 years of hydrological and meteorological data, and the model was used to calculate hydrological impact under two climate change scenarios. The first scenario with a warmer and wetter climate predicted a smaller magnitude of change than the second scenario. The first scenario showed an increase in evaporation each month, an increase in catchment runoff in summer, fall and winter, but a decrease in spring, resulting in a slight increase in lake level. Annual runoff and lake level would increase because the precipitation change overrides evaporation change. The second scenario with a warmer, drier climate predicted a greater change, and indicated that evaporation would increase each month, runoff would increase in many months, but would decrease in spring, causing the lake level to decrease slightly. Annual runoff and lake level would decrease because evaporation change overrides precipitation change. In both scenarios, the water balance changes in winter and spring are pronounced. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Solute and runoff time-series at Finsterwalderbreen, Svalbard, provide evidence for considerable basal routing of water and the existence of at least two contrasting subglacial chemical weathering environments. The hydrochemistry of a subglacial upwelling provides evidence for a snowmelt-fed subglacial reservoir that dominates bulk runoff during recession flow. High concentrations of Cl and crustal ions, high pCO2 and ratios of [*SO2−4/(*SO2−4+HCO3)] close to 0·5 indicate the passage of snowmelt through a subglacial weathering environment characterized by high rock:water ratios, prolonged residence times and restricted access to the atmosphere. At higher discharges, bulk runoff becomes dominated by icemelt from the lower part of the glacier that is conveyed through a chemical weathering environment characterized by low rock:water ratios, short residence times and free contact with atmospheric gases. These observations suggest that icemelt is routed via a hydrological system composed of basal/ice-marginal, englacial and supraglacial components and is directed to the glacier margins by the ice surface slope. Upwelling water flows relatively independently of icemelt to the terminus via a subglacial drainage system, possibly constituting flow through a sediment layer. Cold basal ice at the terminus forces it to take a subterranean routing in its latter stages. The existence of spatially discrete flow paths conveying icemelt and subglacial snowmelt to the terminus may be the norm for polythermal-based glaciers on Svalbard. Proglacial mixing of these components to form the bulk meltwaters gives rise to hydrochemical trends that resemble those of warm-based glaciers. These hydrochemical characteristics of bulk runoff have not been documented on any other glacier on Svalbard to date and have significance for understanding interactions between thermal regime and glacier hydrology. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Aga Nowak  Andy Hodson 《水文研究》2015,29(6):1588-1603
Our novel study examines landscape biogeochemical evolution following deglaciation and permafrost change in Svalbard by looking at the productivity of various micro‐catchments existing within one watershed. It also sheds light on how moraine, talus and soil environments contribute to solute export from the entire watershed into the downstream marine ecosystem. We find that solute dynamics in different micro‐catchments are sensitive to abiotic factors such as runoff volume, water temperature, geology, geomorphological controls upon hydrological flowpaths and landscape evolution following sea level and glacial changes. Biotic factors influence the anionic composition of runoff because of the importance of microbial SO42? and NO3? production. The legacy of glaciation and its impact upon sea level changes is shown to influence local hydrochemistry, allowing Cl? to be used as a tracer of thawing permafrost that has marine origins. However, we show that a ‘glacial signal’ dominates solute export from the watershed. Therefore, although climatically driven change in the proglacial area has an influence on local ecosystems, the biogeochemical response of the entire watershed is dominated by glacially derived products of rapid chemical weathering. Consequently, only the study of micro‐catchments existing within watersheds can uncover the landscape response to contemporary climate change. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号