首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
Abstract

Climate change will likely have severe effects on water shortages, flood disasters and the deterioration of aquatic systems. In this study, the hydrological response to climate change was assessed in the Wei River basin (WRB), China. The statistical downscaling method (SDSM) was used to downscale regional climate change scenarios on the basis of the outputs of three general circulation models (GCMs) and two emissions scenarios. Driven by these scenarios, the Soil and Water Assessment Tool (SWAT) was set up, calibrated and validated to assess the impact of climate change on hydrological processes of the WRB. The results showed that the average annual runoff in the periods 2046–2065 and 2081–2100 would increase by 12.4% and 45%, respectively, relative to the baseline period 1961–2008. Low flows would be much lower, while high flows would be much higher, which means there would be more extreme events of droughts and floods. The results exhibited consistency in the spatial distribution of runoff change under most scenarios, with decreased runoff in the upstream regions, and increases in the mid- and lower reaches of the WRB.
Editor Z.W. Kundzewicz; Associate editor D. Yang  相似文献   

2.
Climate projections for the Huaihe River Basin, China, for the years 2001–2100 are derived from the ECHAM5/MPI-OM model based on observed precipitation and temperature data covering 1964–2007. Streamflow for the Huaihe River under three emission scenarios (SRES-A2, A1B, B1) from 2010 to 2100 is then projected by applying artificial neural networks (ANN). The results show that annual streamflow will change significantly under the three scenarios from 2010 to 2100. The interannual fluctuations cover a significant increasing streamflow trend under the SRES-A2 scenario (2051–2085). The streamflow trend declines gradually under the SRES-A1B scenario (2024–2037), and shows no obvious trend under the SRES-B1 scenario. From 2010 to 2100, the correlation coefficient between the observed and modeled streamflow in SRES-A2 scenario is the best of the three scenarios. Combining SRES-A2 scenario of the ECHAM5 model and ANN might therefore be the best approach for assessing and projecting future water resources in the Huaihe basin and other catchments. Compared to the observed period of streamflows, the projected periodicity of streamflows shows significant changes under different emission scenarios. Under A2 scenario and A1B scenario, the period would delay to about 32–33a and 27–28a, respectively, but under B1 scenario, the period would not change, as it is about 5–6a and the observed period is about 7–8a. All this might affect drought/flood management, water supply and irrigation projects in the Huaihe River basin.  相似文献   

3.
Abstract

This study uses the Soil and Water Assessment Tool (SWAT) and downscaled climate projections from the ensemble of two global climate models (ECHAM4 and CSIRO) forced by the A1FI greenhouse-gas scenario to estimate the impact of climate change on streamflow in the White Volta and Pra river basins, Ghana. The SWAT model was calibrated for the two basins and subsequently driven by downscaled future climate projections to estimate the streamflow for the 2020s (2006–2035) and 2050s (2036–2075). Relative to the baseline, the mean annual streamflow estimated for the White Volta basin for the 2020s and 2050s showed a decrease of 22 and 50%, respectively. Similarly, the estimated streamflow for the 2020s and 2050s for the Pra basin showed a decrease of 22 and 46%, respectively. These results underscore the need to put in place appropriate adaptation measures to foster resilience to climate change in order to enhance water security within the two basins.

Citation Kankam-Yeboah, K., Obuobie, E., Amisigo, B., and Opoku-Ankomah, Y., 2013. Impact of climate change on streamflow in selected river basins in Ghana. Hydrological Sciences Journal, 58 (4), 773–788.  相似文献   

4.
ABSTRACT

Lack of discharge data for model calibration is challenging for flood prediction in ungauged basins. Since establishment and maintenance of a permanent discharge station is resource demanding, a possible remedy could be to measure discharge only for a few events. We tested the hypothesis that a few flood-event hydrographs in a tropical basin would be sufficient to calibrate a bucket-type rainfall–runoff model, namely the HBV model, and proposed a new event-based calibration method to adequately predict floods. Parameter sets were chosen based on calibration of different scenarios of data availability, and their ability to predict floods was assessed. Compared to not having any discharge data, flood predictions improved already when one event was used for calibration. The results further suggest that two to four events for calibration may considerably improve flood predictions with regard to accuracy and uncertainty reduction, whereas adding more events beyond this resulted in small performance gains.  相似文献   

5.
Abstract

The aim of this article is to assess the impact of four scenarios combining possible changes in climate, atmospheric carbon dioxide, land use and water use by 2050, on the specific set of ecologically relevant flow regime indicators that define environmental flow requirements in a semi-natural river basin in Poland. This aim is presented through a modelling case study using the Soil and Water Assessment Tool (SWAT). Indicators show both positive and negative responses to future changes. Warm projections from the IPSL-CM4 global climate model combined with sustainable land- and water-use projections (SuE) produce the most negative changes, while warm and wet projections from the MIROC3.2 model combined with market-driven projections (EcF) gave the most positive changes. Climate change overshadows land- and water-use change in terms of the magnitude of projected flow alterations. The future of environmental water quantity is brighter under the market-driven rather than the sustainability-driven scenario, which shows that sustainability for terrestrial ecosystems (e.g. more forests and grasslands) can be at variance with sustainability for riverine and riparian ecosystems (requiring sufficient amount and proper timing of river flows).
Editor D. Koutsoyiannis

Citation Piniewski, M., Okruszko, T., and Acreman, M.C., 2014. Environmental water quantity projections under market-driven and sustainability-driven future scenarios in the Narew basin, Poland. Hydrological Sciences Journal, 59 (3–4), 916–934.  相似文献   

6.
Abstract

Quantifying the impacts of climate change on the hydrology and ecosystem is important in the study of the Loess Plateau, China, which is well known for its high erosion rates and ecosystem sensitivity to global change. A distributed ecohydrological model was developed and applied in the Jinghe River basin of the Loess Plateau. This model couples the vegetation model, BIOME BioGeochemicalCycles (BIOME-BGC) and the distributed hydrological model, Water and Energy transfer Process in Large river basins (WEP-L). The WEP-L model provided hydro-meteorological data to BIOME-BGC, and the vegetation parameters of WEP-L were updated at a daily time step by BIOME-BGC. The model validation results show good agreement with field observation data and literature values of leaf area index (LAI), net primary productivity (NPP) and river discharge. Average climate projections of 23 global climate models (GCMs), based on three emissions scenarios, were used in simulations to assess future ecohydrological responses in the Jinghe River basin. The results show that global warming impacts would decrease annual discharge and flood season discharge, increase annual NPP and decrease annual net ecosystem productivity (NEP). Increasing evapotranspiration (ET) due to air temperature increase, as well as increases in precipitation and LAI, are the main reasons for the decreasing discharge. The increase in annual NPP is caused by a greater increase in gross primary productivity (GPP) than in plant respiration, whilst the decrease in NEP is caused by a larger increase in heterotrophic respiration than in NPP. Both the air temperature increase and the precipitation increase may affect the changes in NPP and NEP. These results present a serious challenge for water and land management in the basin, where mitigation/adaption measures for climate change are desired.

Editor Z.W. Kundzewicz; Associate editor D. Yang

Citation Peng, H., Jia, Y.W., Qiu, Y.Q., and Niu, C.W., 2013. Assessing climate change impacts on the ecohydrology of the Jinghe River basin in the Loess Plateau, China. Hydrological Sciences Journal, 58 (3), 651–670.  相似文献   

7.
This study aimed to quantify possible climate change impacts on runoff for the Rheraya catchment (225 km2) located in the High Atlas Mountains of Morocco, south of Marrakech city. Two monthly water balance models, including a snow module, were considered to reproduce the monthly surface runoff for the period 1989?2009. Additionally, an ensemble of five regional climate models from the Med-CORDEX initiative was considered to evaluate future changes in precipitation and temperature, according to the two emissions scenarios RCP4.5 and RCP8.5. The future projections for the period 2049?2065 under the two scenarios indicate higher temperatures (+1.4°C to +2.6°C) and a decrease in total precipitation (?22% to ?31%). The hydrological projections under these climate scenarios indicate a significant decrease in surface runoff (?19% to ?63%, depending on the scenario and hydrological model) mainly caused by a significant decline in snow amounts, related to reduced precipitation and increased temperature. Changes in potential evapotranspiration were not considered here, since its estimation over long periods remains a challenge in such data-sparse mountainous catchments. Further work is required to compare the results obtained with different downscaling methods and different hydrological model structures, to better reproduce the hydro-climatic behaviour of the catchment.
EDITOR M.C. Acreman

ASSOCIATE EDITOR R. Hirsch  相似文献   

8.
In this article, we propose an investigation of the modifications of the hydrological response of two Peruvian Amazonas–Andes basins in relationship with the modifications of the precipitation and evapotranspiration rates inferred by the IPCC. These two basins integrate around 10% of the total area of the Amazonian basin. These estimations are based on the application of two monthly hydrological models, GR2M and MWB3, and the climatic projections come from BCM2, CSMK3 and MIHR models for A1B and B1 emission scenarios (SCE A1B and SCE B1). Projections are approximated by two simple scenarios (anomalies and horizon) and annual rainfall rates, evapotranspiration rates and discharge were estimated for the 2020s (2008–2040), 2050s (2041–2070) and 2080s (2071–2099). Annual discharge shows increasing trend over Requena basin (Ucayali river), Puerto Inca basin (Pachitea river), Tambo basin (Tambo river) and Mejorada basin (Mantaro river) while discharge shows decreasing trend over the Chazuta basin (Huallaga river), the Maldonadillo basin (Urubamba river) and the Pisac basin (Vilcanota river). Monthly discharge at the outlet of Puerto Inca, Tambo and Mejorada basins shows increasing trends for all seasons. Trends to decrease are estimated in autumn discharge over the Requena basin and spring discharge over Pisac basin as well as summer and autumn discharges over both the Chazuta and the Maldonadillo basins. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

The French national project IMAGINE2030 aims to assess future water availability in the Garonne River basin (southwest France) by taking account of changes in both climate and water management in the 2030s. Within this project, two mountainous drainage basins located in the Pyrenees were examined to assess the specific impact of climate change on reservoir management. The Salat River basin at Roquefort, is considered as a proxy (representative of a natural basin), whereas the Ariège River at Foix is influenced by hydropower production in winter and by water releases to sustain low flows in summer. The Cequeau rainfall–runoff model, combined with a simplified model of reservoir management operations, was calibrated on present-day conditions and forced with climate projections derived from the IPCC AR4 report. The results show that a warming climate over the basins induces a decrease in mean annual runoff, a shift to earlier snow melting in mountainous areas and more severe low-flow conditions. The simulations show a decrease in electricity generation. Under two water management scenarios (one “business-as-usual” and the other incorporating an increased downstream water demand in compliance with requirements for increased minimum flow), simulations for the Ariège River basin suggest an earlier filling of the reservoir is necessary in winter to anticipate the increased release from reservoirs in summer to support minimum flow farther downstream.

Editor Z.W. Kundzewicz; Associate editor D. Hughes

Citation Hendrickx, F. and Sauquet, E., 2013. Impact of warming climate on water management for the Ariège River basin (France). Hydrological Sciences Journal, 58 (5), 976–993.  相似文献   

10.
Abstract

This study contributes to the comprehensive assessment of flood hazard and risk for the Phrae flood plain of the Yom River basin in northern Thailand. The study was carried out using a hydrologic–hydrodynamic model in conjunction with a geographic information system (GIS). The model was calibrated and verified using the observed rainfall and river flood data during flood seasons in 1994 and 2001, respectively. Flooding scenarios were evaluated in terms of flooding depth for events of 25-, 50-, 100- and 200-year return periods. An impact-based hazard estimation technique was applied to assess the degree of hazard across the flood plain. The results showed that 78% of the Phrae flood-plain area of 476 km2 in the upper Yom River basin lies in the hazard zone of the 100-year return-period flood. Risk analyses were performed by incorporating flood hazard and the vulnerability of elements at risk. Based on relative magnitude of risk, flood-prone areas were divided into low-, moderate-, high- and severe-risk zones. For the 100-year return-period flood, the risk-free area was found to be 22% of the total flood plain, while areas under low, medium, high and severe risk were 33, 11, 28 and 6%, respectively. The outcomes are consistent with overall property damage recorded in the past. The study identifies risk areas for priority-based flood management, which is crucial when there is a limited budget to protect the entire risk zone simultaneously.

Citation Tingsanchali, T. & Karim, F. (2010) Flood-hazard assessment and risk-based zoning of a tropical flood plain: case study of the Yom River, Thailand. Hydrol. Sci. J. 55(2), 145–161.  相似文献   

11.
Abstract

A semi-distributed hydrological model and reservoir optimization algorithm are used to evaluate the potential impacts of climate change on existing and proposed reservoirs in the Sonora River Basin, Mexico. Inter-annual climatic variability, a bimodal precipitation regime and climate change uncertainties present challenges to water resource management in the region. Hydrological assessments are conducted for three meteorological products during a historical period and a future climate change scenario. Historical (1990–2000) and future (2031–2040) projections were derived from a mesoscale model forced with boundary conditions from a general circulation model under a high emissions scenario. The results reveal significantly higher precipitation, reservoir inflows, elevations and releases in the future relative to historical simulations. Furthermore, hydrological seasonality might be altered with a shift toward earlier water supply during the North American monsoon. The proposed infrastructure would have a limited ability to ameliorate future conditions, with more benefits in a tributary with lower flood hazard. These projections of the impacts of climate change and its interaction with infrastructure should be of interest to water resources managers in arid and semi-arid regions.
Editor D. Koutsoyiannis  相似文献   

12.
Abstract

A canonical correlation method for determining the homogeneous regions used for estimating flood characteristics of ungauged basins is described. The method emphasizes graphical and quantitative analysis of relationships between the basin and flood variables before the data of the gauged basins are used for estimating the flood variables of the ungauged basin. The method can be used for both homogeneous regions, determined a priori by clustering algorithms in the space of the flood-related canonical variables, as well as for “regions of influence” or “neighbourhoods” centred on the point representing the estimated location of the ungauged basin in that space.  相似文献   

13.
Abstract

The Hulu Langat basin, a strategic watershed in Malaysia, has in recent decades been exposed to extensive changes in land-use and consequently hydrological conditions. In this work, the impact of Land Use and Cover Change (LUCC) on hydrological conditions (water discharge and sediment load) of the basin were investigated using the Soil and Water Assessment Tool (SWAT). Four land-use scenarios were defined for land-use change impact analysis, i.e. past, present (baseline), future and water conservation planning. The land-use maps, dated 1984, 1990, 1997 and 2002, were defined as the past scenarios for LUCC impact analysis. The present scenario was defined based on the 2006 land-use map. The 2020 land-use map was simulated using a cellular automata-Markov model and defined as the future scenario. Water conservation scenarios were produced based on guidelines published by Malaysia’s Department of Town and Country Planning and Department of Environment. Model calibration and uncertainty analysis was performed using the Sequential Uncertainty Fitting (SUFI-2) algorithm. The model robustness for water discharge simulation for the period 1997–2008 was good. However, due to uncertainties, mainly resulting from intense urban development in the basin, its robustness for sediment load simulation was only acceptable for the calibration period 1997–2004. The optimized model was run using different land-use maps over the periods 1997–2008 and 1997–2004 for water discharge and sediment load estimation, respectively. In comparison to the baseline scenario, SWAT simulation using the past and conservative scenarios showed significant reduction in monthly direct runoff and monthly sediment load, while SWAT simulation based on the future scenario showed significant increase in monthly direct runoff, monthly sediment load and groundwater recharge.
Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   

14.
The reliability of a levee system is a crucial factor in flood risk management. In this study we present a probabilistic methodology to assess the effects of levee cover strength on levee failure probability, triggering time, flood propagation and consequent impacts on population and assets. A method for determining fragility curves is used in combination with the results of a one-dimensional hydrodynamic model to estimate the conditional probability of levee failure in each river section. Then, a levee breach model is applied to calculate the possible flood hydrographs, and for each breach scenario a two-dimensional hydrodynamic model is used to estimate flood hazard (flood extent and timing, maximum water depths) and flood impacts (economic damage and affected population) in the areas at risk along the river reach. We show an application for levee overtopping and different flood scenarios for a 98 km reach of the lower Po River in Italy. The results show how different design solutions for the levee cover can influence the probability of levee failure and the consequent flood scenarios. In particular, good grass cover strength can significantly delay levee failure and reduce maximum flood depths in the flood-prone areas, thus helping the implementation of flood risk management actions.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Viglione  相似文献   

15.
ABSTRACT

Discharge observations and reliable rainfall forecasts are essential for flood prediction but their availability and accuracy are often limited. However, even scarce data may still allow adequate flood forecasts to be made. Here, we explored how far using limited discharge calibration data and uncertain forcing data would affect the performance of a bucket-type hydrological model for simulating floods in a tropical basin. Three events above thresholds with a high and a low frequency of occurrence were used in calibration and 81 rainfall scenarios with different degrees of uncertainty were used as input to assess their effects on flood predictions. Relatively similar model performance was found when using calibrated parameters based on a few events above different thresholds. Flood predictions were sensitive to rainfall errors, but those related to volume had a larger impact. The results of this study indicate that a limited number of events can be useful for predicting floods given uncertain rainfall forecasts.  相似文献   

16.
ABSTRACT

Representations of precipitation from CMIP5 models over the 1950–1999 period in hydrographic basins that are relevant to the Brazilian electricity sector are evaluated in this study. The majority of ensemble members adequately represented seasonal variability, although they differed about the patterns of high-frequency interannual variation. The models did not adequately represent seasonal-scale precipitation in the southern region of Brazil. Relative to other models, the CNRM_CM5 and HadGEM2-ES models demonstrated good seasonal and interannual representation over most basins, while the global CanESM2, GFDL-ESM2M and IPSL_CM5A-LR models demonstrated relatively poor performance. The models concur on the impact of the RCP8.5 scenario in the Southeast/Midwest and South sectors over the period 2015–2044, suggesting that precipitation will decrease up to 15% in the basin supplying the Furnas hydropower plant and by 12% in the basin supplying the Itaipú plant, which represents 25% of the hydroelectric production in Brazil.  相似文献   

17.
Abstract

The management of water resources requires knowledge of the spatial and temporal distribution of surface and groundwater resources, and an assessment of the influence of man on the hydrological regime.

For small water courses regional estimates can be made from representative basins which offer guidelines (1) for the computation of mean annual flow and in some cases for the determination of the statistical distribution of the annual flow; (2) for the computation of the 10-year flood maximum discharge and volume.

An example concerning the tropical African Sahel is given. From a general study of the daily precipitation, a simple rainfall/runoff model used on a daily basis and calibrated on data from representative basins, and also the direct comparison of results from 55 representative basins, statistical distribution curves were established for annual runoff based on mean annual precipitation and the geomorphological characteristics of the basins.

Another example concerning tropical Africa west of Congo presents a methodology for the computation of the 10-year flood (maximum discharge and volume).

The systematic study of 60 representative basins makes it possible to plot the runoff coefficient R/P as a function of basin climate, mean slope and soil permeability. Other curves are used to determine the time of rise and the base time of the hydrograph as a function of the basin area and the mean slope.

The experimental basin is a good tool for the assessment of the influence of man on hydrological parameters. An example shows the influence of land use on the regression between annual precipitation and annual runoff.  相似文献   

18.
This study demonstrates the spatial variation in hydrologic processes across the Upper Mississippi River Basin (UMRB) by the end of 21st century, by ingesting FOREcasting Scenarios (FORE‐SCE) of Land‐use Change projections into a physics‐based hydrologic model—Soil and Water Assessment Tool. The model is created for UMRB (440,000 km2), using the National Landcover Database of year 2001 and climate data of 1991–2010. Considering 1991–2010 as the baseline reference period, FORE‐SCE projections of year 2091 under three scenarios (A1B, A2, and B1 from the Intergovernmental Panel on Climate Change) are separately assimilated into the calibrated model, whereas climate input is kept the same as in the baseline. Modeling results suggest an increase of 0.5% and 3.5% in the average annual streamflow at the basin outlet (Grafton, Illinois) during 2081–2100, respectively, for A1B and A2, whereas for B1, streamflow would decrease by 1.5%. Under the “worst case” A2 scenario, 6% and 133% increase, respectively, in agricultural and urban areas with 30% depletion of forest and grassland would result into 70% increase in surface runoff, 20% decrease in soil moisture, and 4% decrease in evapotranspiration in certain parts of the basin. Conversion of cropland, forest, or grassland to perennial hay/pasture areas would lower surface runoff by 25% especially in the central region, whereas persistent forest cover in the northern region would cause up to 7% increase in evapotranspiration. The ecosystem in the lower half of UMRB is likely to become adverse, as dictated by a composite water–energy balance indicator. Future land use change extents and resultant hydrologic responses are found significantly different under A2, A1B, and B1 scenarios, which resonates the need for multi‐scenario ensemble assessments towards characterizing a probable future. The spatial variation of hydrologic processes as shown here helps to identify potential “hot spots,” giving ways to adopt more effective policy alternatives at regional level.  相似文献   

19.
Abstract

The impact of fire on daily discharges from two mountainous basins located in the permafrost region of Eastern Siberia, the Vitimkan (969 km2) and Vitim (18 200 km2) rivers, affected by fire over 78% and 49% of their areas, respectively, in 2003, was investigated. The results of hydrological and meteorological data analysis suggest that the Vitimkan River basin had a rapid and profound hydrological response to wildfire in 2003 expressed through a 41% (133 mm) increase of summer flow. Conversely, the larger Vitim River basin showed no significant changes in discharge after the fire. The parameters of the process-based hydrological model Hydrograph were estimated for pre-fire conditions. The results of runoff simulations conducted for the continuous pre-fire periods of 1966–2002 and 1970–2002 for the Vitimkan and Vitim river basins, respectively, on a daily time step, showed satisfactory agreement with the observed flow series of both basins. Significant underestimation of precipitation and its poor representativeness for mountainous watersheds was revealed as the main cause of observed and simulated flow discrepancies, especially for high flood events. The set of dynamic parameters was developed based on data analysis and post-fire landscape changes as derived from a literature review. The model was applied to investigate the processes in the soil column and their effect on runoff formation during the post-fire period. The new set of model parameters implied the intensification of soil thaw, reduction of infiltration rate and evapotranspiration, and increase of upper subsurface flow fraction in summer flood events following the fire. According to modelling results, the post-fire thaw depth exceeded the pre-fire thaw depth by 0.4–0.7 m. Total evapotranspiration reduced by 40% in summer months, while surface flow increased almost 2.5 times during maximum flood events.  相似文献   

20.
Abstract

The concept of “catchment-scale storm velocity” quantifies the rate of storm motion up and down the basin accounting for the interaction between the rainfall space–time variability and the structure of the drainage network. It provides an assessment of the impact of storm motion on flood shape. We evaluate the catchment-scale storm velocity for the 29 August 2003 extreme storm that occurred on the 700 km2-wide Fella River basin in the eastern Italian Alps. The storm was characterized by the high rate of motion of convective cells across the basin. Analysis is carried out for a set of basins that range in area from 8 to 623 km2 to: (a) determine velocity magnitudes for different sub-basins; (b) examine the relationship of velocity with basin scale and (c) assess the impact of storm motion on simulated flood response. Two spatially distributed hydrological models of varying degree of complexity in the representation of the runoff generation processes are used to evaluate the effects of the storm velocity on flood modelling and investigate model dependencies of the results. It is shown that catchment-scale storm velocity has a non-linear dependence on basin scale and generally exhibits rather moderate values, in spite of the strong kinematic characteristics of individual storm elements. Consistently with these observations and for both models, hydrological simulations show that storm motion has an almost negligible effect on the flood response modelling.

Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Nikolopoulos, E.I., Borga, M., Zoccatelli, D., and Anagnostou, E.N., 2014. Catchment-scale storm velocity: quantification, scale dependence and effect on flood response. Hydrological Sciences Journal, 59 (7), 1363–1376. http://dx.doi.org/10.1080/02626667.2014.923889  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号