首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin layers are fine-scale structures with high concentrations of organisms or particles occurring over very small vertical scales (a few meters or less), but with large horizontal scales, often extending for many kilometers. Because of their small vertical scales, thin layers are traditionally under sampled, but when proper measurement techniques are used, thin layers have been found to be ubiquitous in stratified oceans. A multi-investigator, interdisciplinary study of thin layers was sponsored by the US Office of Naval Research under a research initiative termed: Layered Organization in the Coastal Ocean (LOCO). The goal of this program was to understand the properties of coastal thin layers and the interacting physical, chemical, biological and optical processes responsible for their formation, maintenance and dissipation. As part of this program, fine-scale vertical profiles (cm resolution) of biological, physical and chemical properties were made hourly over periods spanning 1–3 weeks during three summers in Monterey Bay, California USA. The vertical profiles were made using arrays of moored autonomous profilers. In total, these profilers made ~2000 individual vertical profiles and provided a unique view of phytoplankton thin layer spatial-temporal dynamics. The autonomous profiler data were supplemented with high-resolution ship-based profiling and discrete water sampling for identifications of organisms.Persistent phytoplankton thin layers were observed during each year in Monterey Bay; however, each year had very different biological and physical dynamics. During 2002, thin layers were dominated by the non-motile and potentially toxic diatom genus Pseudo-nitzschia; during 2005, thin layers were dominated by the highly motile dinoflagellate species Akashiwo sanguinea; and during 2006, a more complex phytoplankton assemblage was present, but thin layers of the toxic dinoflagellate species Alexandrium catenella frequently occurred. The variability in the vertical location of thin layers in 2002 was primarily controlled by physics, while behavior, e.g. diurnal vertical migration patterns and daytime near-surface aggregations, primarily controlled the location of thin layers in 2005 and 2006. In 2002, phytoplankton thin layers were present in the water column 87% of the time, in 2005, 56% of the time and in 2006, 21% of the time. The median integrated chlorophyll concentration within the thin layers was found to be approximately 47% of the total water column chlorophyll in 2002, 41% in 2005 and 33% in 2006. Additional results in this study describe the mechanisms driving the spatial-temporal dynamics of these phytoplankton thin layers with special emphasis on diel patterns and the specific relationships that thin layers have to biological and physical processes and water column optics.  相似文献   

2.
This study combined measurements from multiple platforms with acoustic instruments on moorings and on a ship and optics on a profiler and an autonomous underwater vehicle (AUV) to examine the relationships between fluorescent, bioluminescent, and acoustically scattering layers in Monterey Bay during nighttime hours in July and August of 2006 and May of 2008. We identified thin bioluminescent layers that were strongly correlated with acoustic scattering at the same depth but were part of vertically broad acoustic features, suggesting layers of unique composition inside larger biomass features. These compositional thin layers nested inside larger biomass features may be a common ecosystem component and are likely to have significant ecological impacts but are extremely difficult to identify as most approaches capable of the vertical scales of measurement necessary for the identification of sub-meter scale patterns assess bulk properties rather than specific layer composition. Measurements of multiple types of thin layers showed that the depth offset between thin phytoplankton and zooplankton layers was highly variable with some layers found at the same depth but others found up to 16 m apart. The vertical offset between phytoplankton and zooplankton thin layers was strongly predicted by the fraction of the water column fluorescence contained within a thin phytoplankton layer. Thin zooplankton layers were only vertically associated with thin phytoplankton layers when the phytoplankton in a layer accounted for more than about 18–20% of the water column chlorophyll. Trophic interactions were likely occurring between phytoplankton and zooplankton thin layers but phytoplankton thin layers were exploited by zooplankton only when they represented a large fraction of the available phytoplankton, suggesting zooplankton have some knowledge of the available food over the entire water column. The horizontal extent of phytoplankton layers, discussed in the second paper in this series, is likely an important factor contributing to this selective exploitation by zooplankton. The pattern of vertical offset between phytoplankton and zooplankton layers was consistent between studies in different years and using different combinations of platforms, indicating the importance of the relationship between zooplankton layers and the fraction of phytoplankton within a layer at night within Monterey Bay. These results highlight the value of integrating measurements of various types of organisms to understand thin layers processes and the importance of assessing ecological interactions in plankton thin layers within the context of the properties of the entire water column, like the animals themselves do.  相似文献   

3.
During the 2005 Layered Organization in the Coastal Ocean (LOCO) field program in Monterey Bay, California, we integrated intensive water column surveys by an autonomous underwater vehicle (AUV) with satellite and mooring data to examine the spatiotemporal scales and processes of phytoplankton thin-layer development. Surveying inner to outer shelf waters repeatedly between August 18 and September 6, the AUV acquired 6841 profiles. By the criteria: [(1) thickness ≤3 m at the full-width half-maximum, (2) peak chlorophyll at least twice the local background concentrations, and (3) a corresponding peak in optical backscattering], thin layers were detected in 3978 (58%) of the profiles. Average layer thickness was 1.4 m, and average intensity was 13.5 μg l?1 above (3.2x) background. Thin layers were observed at depths between 2.6 and 17.6 m, and their depths showed diurnal vertical migration of the layer phytoplankton populations. Horizontal scales of thin-layer patches ranged from <100 m to>10,000 m. A thin-layer index (TLI), computed from layer frequency, intensity and thinness, was highest in mid-shelf waters, coincident with a frontal zone between bay waters and an intrusion of low-salinity offshore waters. Satellite observations showed locally enhanced chlorophyll concentrations along the front, and in situ observations indicated that phytoplankton may have been affected by locally enhanced nutrient supply in the front and concentration of motile populations in a convergence zone. Minimum TLI was furthest offshore, in the area most affected by the intrusion of offshore, low-chlorophyll waters. Average thin-layer intensity doubled during August 25–29, in parallel with warming at the surface and cooling within and below the thermocline. During this apparent bloom of thin-layer populations, density oscillations in the diurnal frequency band increased by an order of magnitude at the shelfbreak and in near-bottom waters of the inner shelf, indicating the role of internal tidal pumping from Monterey Canyon onto the shelf. This nutrient transport process was mapped by the AUV. Peak TLI was observed on August 29 during a nighttime survey, when phytoplankton were concentrated in the nutricline. Empirical orthogonal function decomposition of the thin-layer particle size distribution data from this survey showed that throughout the inner to outer shelf survey domain, the layers were dominated by phytoplankton having a cross-section of ~50 μm. This is consistent with the size of abundant Akashiwo sanguinea cells observed microscopically in water samples. During a subsequent and stronger intrusion of low-salinity offshore waters, spatially-averaged vertical density stratification decreased by > 50%, and phytoplankton thin layers disappeared almost completely from the AUV survey domain.  相似文献   

4.
Thin phytoplankton layers are common features in the coastal environment; however sampling these fine-scale optical features across broad horizontal scales remains a challenge. To investigate the horizontal spatial structure of thin phytoplankton layers, we performed an overnight survey in northern Monterey Bay, CA, USA using a SeaSciences Acrobat towed-vehicle. Physical and optical measurements were collected between the surface and near-bottom-depths along four parallel, across-shore transects. Three coherent chlorophyll features were observed: (1) a broad, sub-surface patch at the offshore end, (2) a near-surface patch at the nearshore end, and (3) a deep patch located between the nearshore and offshore patches. The offshore and nearshore patch were separated by a change in seafloor slope and a region of compressed, shoaling isopycnals. Both the offshore and nearshore features were located at the pycnocline, had similar optical properties, and were co-located with a low-salinity intrusion. The deep chlorophyll patch had associated physical and optical properties that were distinct from the patches at the pycnocline. The results from this study further underscore the heterogeneous horizontal spatial structure of thin layers and also add to the growing evidence suggesting that low-salinity intrusions may be strongly linked to the formation of thin phytoplankton layers over the northern shelf of Monterey Bay.  相似文献   

5.
《Continental Shelf Research》2008,28(18):2584-2593
Despite the increasing occurrence of harmful phytoplankton blooms along the North American west coast, records of phytoplankton populations and related environmental conditions are uncommon. In this study, twice monthly measurements in the upper 50 m are used to assess physico-chemical conditions contributing to the growth of potentially harmful bloom taxa over two annual cycles (2004–2005) in the Santa Monica Bay, California. Results were compared to the predictions of the Intaglio model [Smayda, T.J., Reynolds, C.S., 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. Journal of Plankton Research 23, 447–461.] of phytoplankton community assembly. Potentially harmful taxa were present in every surface sample and were numerically dominant during the largest observed blooms, contributing up to 92% of the total phytoplankton abundance >5 μm. Large interannual variation was observed in the dominant taxa and bloom seasonality; Pseudo-nitzschia sp. dominated blooms in early 2004 (February and April), whereas Prorocentrum micans and Lingulodinium polyedrum blooms occurred in May and September of 2005, respectively. The Pseudo-nitzschia sp. blooms were associated with elevated nitrate, dissolved silicon and phosphate concentrations throughout the euphotic zone; the first bloom followed a strong upwelling and the second occurred during the onset of seasonal stratification. In contrast, the blooms of P. micans were associated with highly stratified, low nutrient waters. Multivariate analysis supports the roles of temperature, mixed-layer depth and nutrient concentrations as primary controls of bloom growth, following the conceptual Intaglio model. The strong presence of potentially harmful bloom species in the Santa Monica Bay during this study appears unusual in comparison to limited studies over the last several decades.  相似文献   

6.
Most existing studies on the algal communities of acid lakes are based on environments that have been caused by anthropogenic disturbances. Such lakes have a different origin compared to the natural acidic lakes and could be expected to differ also in the mechanisms controlling phytoplankton and trophic status. Planktonic community in Lake Caviahue is somewhat diverse in spite of the low pH of the water. Algae have a distinctive vertical distribution: the values of phytoplankton biomass remain constant throughout the water column and at times were highest in the upper end of the hypolimnion, forming a maximum or a layer of chlorophyll a at depth. The goal of this work was to investigate the factors influencing the seasonal and vertical distribution of phytoplankton. The lake was sampled between the years 2004 and 2006. Physical, chemical and biological parameters at different depths throughout the water column were determined. The interrelationships between environmental variables at different sampling dates were analyzed using an integration of multivariate matrices, multiple factor analysis, to analyze any joint partnerships in the samples. We found that phytoplankton biomass is dominated by Keratococcus rhaphidioides. With regard to zooplankton, we found a single species of rotifers (Philodina sp.). The two arms of the lake and the depths have different behaviours showing differences in the arms' conductivity, dissolved oxygen and pH. The more superficial layers were characterized by high values of phytoplankton and zooplankton biomass, organic and inorganic carbon, dissolved oxygen and pH. The deeper layers showed high values of chlorophyll a, ammonium and phosphorus (dissolved and particulate). From the multivariate analysis the relationships of the each algal species with pH, as a possible indicator of the degree of “acidophilia”, could be extracted.  相似文献   

7.
The degree of layered organization of planktonic organisms in coastal systems impacts trophic interactions, the vertical availability of nutrients, and many biological rate processes. While there is reasonable characterization of the vertical structure of these phenomena, the extent and horizontal length scale of variation has rarely been addressed. Here we extend the examination of the vertical scale in the first paper of the series to the horizontal scale with combined shipboard acoustic measurements and bio-optic measurements taken on an autonomous underwater vehicle. Measurements were made in Monterey Bay, CA from 2002 to 2008 for the bio-optical parameters and during 2006 for acoustic scattering measurements. The combined data set was used to evaluate the horizontal decorrelation length scales of the bio-optical and acoustic scattering layers themselves. Because biological layers are often decoupled from the physical structure of the water column, assessment of the variance within identified layers was appropriate. This differs from other studies in that physical parameters were not used as a basis for the layer definition. There was a significant diel pattern to the decorrelation length scale for acoustic layers with the more abundant nighttime layers showing less horizontal variability despite their smaller horizontal extent. A significant decrease in the decorrelation length scale was found in bio-optical parameters over six years of study, coinciding with a documented shift in the plankton community. Results highlight the importance of considering plankton behavior and time of day with respect to scale when studying layers, and the challenges of sampling these phenomena.  相似文献   

8.
太湖梅梁湾春季浮游植物初级生产力   总被引:3,自引:3,他引:0  
用黑白瓶测氧法对梅梁湾春季浮游植物初级生产力的变化特征进行研究,探讨了初级生产力的日变化、垂直变化、区域分布、浮游植物现存量与初级生产力的关系以及不同曝光时间对P-I曲线的影响.结果表明,梅梁湾浮游植物初级生产力存在明显的日变化,最大值出现在10:00-14:00;初级生产力在梅梁湾分布呈现为从湾内向湾口逐渐递减的趋势;除表层水受光抑制影响使其生产力相对较低外,初级生产力随水深的增加而降低;初级生产力与叶绿素a存在显著的正相关,用水柱层平均叶绿素a浓度来估算初级生产力比用表层叶绿素a浓度来估算要更为精确;短的曝光时间往往带来高的初级生产力和同化系数.  相似文献   

9.
Turbulence measurements in fine-scale phytoplankton layers (∼1 to ∼10 m) in the Gulf of Aqaba (Red Sea) were used to evaluate mechanisms of layer formation, maintenance, and breakdown. Simultaneous profiles of chlorophyll a (Chl a) fluorescence and temperature microstructure were measured in the upper 40 m of a 430 m water column over a 16-d period, using a Self Contained Autonomous MicroProfiler (SCAMP). Layers of concentrated phytoplankton were identified in 95 of the 456 profiles. The layers were situated in density stratified regions between 15 and 38 m depth and were characterized by intensities of 0.1 to 0.35 μg Chl a L−1 (as much as two times background concentrations) and an average thickness of 10 m. We show that turbulent mixing and isopycnal displacements associated with internal waves modulated the thickness of the layers. Variations in mixing rates within layers were connected to the vertical structure of the stratified turbulence and the stage of layer development. The breakdown of a persistent phytoplankton layer was tied to strong turbulent mixing at the base of the surface mixed layer, which encroached on the layer from above. Hydrographic observations and scaling analysis suggest that the layers most likely formed in horizontal intrusions from the adjacent coastal region. The cross-shore propagation of phytoplankton-rich intrusions may have important implications for the trophic state of offshore planktonic communities.  相似文献   

10.
Massachusetts Bay, a semi-enclosed embayment (50×100 km) in the Northwest Atlantic, is the focus of a monitoring program designed to measure the effects of relocating the Boston Harbor sewage outfall to a site 15 km offshore in Massachusetts Bay. The Massachusetts Water Resources Authority (MWRA) in situ monitoring program samples selected stations up to 17 times per year to observe seasonal changes in phytoplankton biomass and other water quality variables. We investigated the feasibility of augmenting the monitoring data with satellite ocean color data to increase the spatial and temporal resolution of quantitative phytoplankton measurements. In coastal regions such as Massachusetts Bay, ocean color remote sensing can be complicated by in-water constituents whose concentrations vary independently of phytoplankton and by inaccurate modeling of absorbing aerosols that tend to be concentrated near the coast. An evaluation of in situ and sea-viewing wide field-of-view sensor (SeaWiFS) measurements from 1998 to 2005 demonstrated that SeaWiFS overestimated chlorophyll a mainly due to atmospheric correction errors that were amplified by absorption from elevated concentrations of chlorophyll a and colored dissolved organic matter. Negative water-leaving radiances in the 412 nm band, an obvious artifact of inadequate atmospheric correction, were recorded in approximately 60–80% of the cloud-free images along the coast, while the remaining portions of the Bay only experience negative radiances 35–55% of the time with a clear nearshore to offshore decrease in frequency. Seasonally, the greatest occurrences of negative 412 nm radiances were in November and December and the lowest were recorded during the summer months. Concentrations of suspended solids in Massachusetts Bay were low compared with other coastal regions and did not have a significant impact on SeaWiFS chlorophyll a measurements. A regional empirical algorithm was developed to correct the SeaWiFS data to agree with in situ observations. Monthly SeaWiFS composites illustrated the spatial extent of a bimodal seasonal pattern, including prominent spring and fall phytoplankton blooms; and the approximate 115 cloud-free scenes per year revealed interannual variations in the timing, magnitude and duration of phytoplankton blooms. Despite known artifacts of SeaWiFS in coastal regions, this study provided a viable chlorophyll a product in Massachusetts Bay that significantly increased the spatial and temporal synoptic coverage of phytoplankton biomass, which can be used to gain a comprehensive ecosystem-wide understanding of phytoplankton dynamics at event, seasonal and interannual timescales.  相似文献   

11.
After the Marmara (Izmit) Earthquake (magnitude 7.4) on 17 August 1999, chemical oceanographical characteristics of Izmit Bay were investigated in order to examine the possible effects of the refinery fire and uncontrolled entrance of domestic wastes to the surface waters. The dissolved oxygen (DO) content of the water column in August 1999 was the lowest value of all the measurement periods. It was found to be lower than the detection limit of the method (0.03 mgl(-1)) in the lower layer of eastern and central basins of the Bay, whereas the dissolved hydrogen sulfide (DHS) values were high, varying between 0.14 and 1.28 mgl(-1). The deficiency of DO and in turn formation of DHS were caused by the spreading petroleum from the refinery fire onto the sea surface and waste loads from the damaged municipal waste effluent system. The increasing organic/inorganic loads into the Bay stimulated the phytoplankton blooms which cause locally saturated DO concentrations in the eastern basin during autumn 1999. DO concentrations increased in lower layer waters during winter, whilst DHS formation disappeared when water originating from the Marmara Sea replenish the water column of Izmit Bay. However, DHS formation established again in August 2000.  相似文献   

12.
The increased air temperature is expected to have important driver on spring phytoplankton dynamics. To test whether spatial heterogeneity modifies the synchronous responses of phytoplankton to regional temperature driver, we evaluate temporal coherences for physical factors (temperature, water stability and non-algal light extinction), nutrients (nitrogen, phosphorus and silicon), and biomass and density of phytoplankton by Pearson correlation analysis and synchrony for phytoplankton community dynamics by Mantel test and nonmetric multi-dimensional scaling (NMS), during spring bloom (February 23–April 28, 2005) within Xiangxi Bay, a high spatial gradient bay of Three-Gorges Reservoir (China). The high level of temporal coherences for surface water temperature (r = 0.946, p < 0.01) and relative water column stability (r = 0.750, p < 0.01) were found between pair sites (A and B), in which the increase trends occurred with increase in regional air temperature during the study period. However, the low synchrony for phytoplankton dynamics were indeed observed between Site A and B, especially for the density of common dominant taxa (Cyclotella spp.: r = 0.155, p = 0.388) and community structure (Mantel test: r = 0.351). Moreover, the local habitat characteristics such as nutrient (nitrogen and phosphorus) and non-algal light extinction showed low levels of temporal coherence. It indicated that local community of phytoplankton varies rather independently within the single lentic bay with high spatial heterogeneity and that dispersal of algal organisms among locations cannot overwhelm out these local dynamics. Contrary to many studies, the present results argued that, in a small geographic area (i.e., a single reservoir bay of approximately 24 km length), spatial gradients also may influence spring phytoplankton response to regional temperature driver.  相似文献   

13.
Carrying assorted cargo and covered with paints of varying toxicity, lost intermodal containers may take centuries to degrade on the deep seafloor. In June 2004, scientists from Monterey Bay Aquarium Research Institute (MBARI) discovered a recently lost container during a Remotely Operated Vehicle (ROV) dive on a sediment-covered seabed at 1281 m depth in Monterey Bay National Marine Sanctuary (MBNMS). The site was revisited by ROV in March 2011. Analyses of sediment samples and high-definition video indicate that faunal assemblages on the container’s exterior and the seabed within 10 m of the container differed significantly from those up to 500 m. The container surface provides hard substratum for colonization by taxa typically found in rocky habitats. However, some key taxa that dominate rocky areas were absent or rare on the container, perhaps related to its potential toxicity or limited time for colonization and growth. Ecological effects appear to be restricted to the container surface and the benthos within ∼10 m.  相似文献   

14.
Fine-structure (centimeters to meters) in vertical profiles of acoustic volume scattering strength is a common and ecologically significant characteristic of the coastal marine water column. The processes that create these structures modify the availability of food and exposure to predation for secondary producers at and below spatial and temporal scales that characterize their daily ambits. Thin acoustic scattering layers may persist for weeks at a particular coastal location, but they may also appear and disappear in only a few hours. These layers are usually evidence of mesozooplankton and micronekton having aggregated at peaks, gradients, or boundaries in the vertical distribution of various water column properties that characterize a marine ecosystem. The behaviors of both predators and prey are implicated in the generation of complex, time-dependent patterns of fine-structure. Specifically, diel vertical migration to layers of prey, isolumes, isotherms, isopycnals, or chemoclines can be responsible for the nighttime formation of thin acoustic layers. Physical processes such as horizontal shear, internal waves, water mass intrusions, tidal forcing, wind mixing of the upper water column, and horizontal advection modify acoustic scattering patterns by changing the vertical distributions of organisms that scatter sound.  相似文献   

15.
《Marine pollution bulletin》2013,72(1-2):286-298
A hierarchical sampling design was used during two seasons (spring (May) and summer (August) 2006). Using this design, three regions of the Kerkennah Islands (Tunisia) were analyzed for the distribution of microalgal, protozoan and metazoan assemblages in two different habitats: (1) the water column; and (2) on Posidonia oceanica (L.) Delile (P. oceanica) leaves in shallow meadows. A total of 85 species were obtained. In particular, the diatom family Naviculacea consistently dominated (both numerically and in their diversity) the micro-algae in all regions for the two seasons of the study and in both habitats. In the Chergui region, which is the closest area to a source of impact, fast growing centric diatoms (such as Thalassionema, Rhizosolenia, Striatella, and Skeletonema) were identified as indicators of high organic matter and nutrient enrichment in water bodies. Protozoan and metazoan species abundance in the different regions indicate a non-random spatial and temporal distribution of the epiphytic organisms on leaves of P. oceanica that correlated with phytoplankton. The results also indicate that (1) the abundance of micro- and macroorganisms in the three regions were higher on P. oceanica leaves than in the water column for the two seasons; (2) environmental factors such as currents and tide influenced assemblages; and (3) the highest abundance was due to direct exposure to the polluted coast of Sfax and the effect of tidal asymmetries generating nutrient-rich inputs from the city.  相似文献   

16.
The Eulerian residual transport velocity and the first-order Lagrangian residual velocity for weakly nonlinear systems have been used extensively in the past to depict inter-tidal mass transport. However, these could not explain the observed net surface sediment transport pattern in Jiaozhou Bay (JZB), located on the western Yellow Sea. JZB is characterized by strong tidal motion, complex topography and an irregular coastline, which are features of typical nonlinear systems. The Lagrangian residual velocity, which is applicable to general nonlinear systems, was simulated with the water parcel tracking method. The results indicate that the composition of the Lagrangian residual velocity at different tidal phases coincides well with the observed net surface sediment transport pattern. The strong dependence of water flushing time on the initial tidal phase can also be explained by the significant intra-tidal variation of the Lagrangian residual velocity. To investigate the hydrodynamic mechanism governing the nonlinearity of the M 2 tidal system, a set of nonlinearity indexes were defined and analysed. In the surface layer, horizontal advection is the main contributor to the strong nonlinearity near the bay mouth, while in the bottom layer, the strong nonlinearity near the bay mouth may result from the vertical viscosity and horizontal advection.  相似文献   

17.
Ballast water exchange processes facilitate the dispersal and unnatural geographic expansion of phytoplankton, including harmful algal bloom species. From 2005 to 2010, over 45,000 vessels (≈ 8000 annually) travelled across Galveston Bay (Texas, USA) to the deep-water ports of Houston (10th largest in the world), Texas City and Galveston. These vessels (primarily tankers and bulkers) discharged ≈ 1.2 × 10(8) metrictons of ballast water; equivalent to ≈ 3.4% of the total volume of the Bay. Over half of the ballast water discharged had a coastwise origin, 96% being from US waters. Galveston Bay has fewer non-indigenous species but receives a higher volume of ballast water discharge, relative to the highly invaded Chesapeake and San Francisco Bays. Given the magnitude of shipping traffic, the role of Galveston Bay, both as a recipient and donor region of non-indigenous phytoplankton species is discussed here in terms of the invasibility risk to this system by way of ballast water.  相似文献   

18.
三峡水库香溪河流域梯级水库浮游植物群落结构特征   总被引:7,自引:3,他引:4  
于2005年10月、2006年1、4、7月对三峡水库香溪河流域3座水库(古洞口一级水库、古洞口二级水库和香溪河库湾)组成的梯级水库的浮游植物种类组成、优势种、群落结构、密度和生物多样性指数进行了周年调查研究.共鉴定出浮游植物7门58属121种(含变种),以绿藻和硅藻种类最多,绿藻有26属49种,占40.50%;硅藻14属41种,占33.88%;其次是甲藻,3属11种,占9.09%;蓝藻5属7种,占5.79%;隐藻3属7种,占5.79%;其它藻类仅占4.96%.浮游植物在古洞口一级水库共有25属31种,古洞口二级水库29属40种,香溪河库湾46属81种.优势度分析显示:古洞口一级水库藻类优势类群为硅藻门、绿藻门,古洞口二级水库为硅藻门、隐藻门和甲藻门,香溪河库湾为绿藻门、硅藻门、甲藻门和隐藻门.3座水库浮游植物年均密度分别为1.110×106、4.837×105和1.734×106 cells/L;其中,最高密度出现在香溪河库湾(4.87×106 cells/L),最低密度出现在古洞口二级水库(5.76×105 cells/L).运用主成分分析对梯级水库进行水质分析,表明沿着水库的梯度水质逐渐恶化.Shannon-Wiener多样性指数和Pielou均匀度指数在3座水库间无明显差异,而香溪河库湾Margalef丰富度指数显著大于古洞口一级、二级水库.前两个指数与浮游植物优势种的评价结果显示,香溪河流域梯级水库处于中污染状态.  相似文献   

19.
Mussel Watch techniques were used to measure the concentrations of petroleum hydrocarbons, synthetic organic hydrocarbons, and trace metals in a preliminary study of the Monterey Bay area in central California. Resident mussels were found to have higher-than-expected petroleum hydrocarbon body burdens in Carmel Bay, an area thought to be relatively contaminant free. A ‘hot spot’ of PCB 1254 and pp′DDE was measured at Año Nueuvo Island, a site previously recognized because of elevated levels of mercury in mussels. PCB 1254 concentrations at Año Nuevo Island were high in relation to the remainder of coastal United States and Baja California, reflecting entrainment of this compound at a biologically active area. The Monterey Harbor Jetty location showed the highest contamination levels for zinc and lead. In fact, this location has the second highest lead concentrations in mussels for the California coast. Biological cycling of certain compounds (PCB, DDT and mercury) in remote locations such as Año Nuevo Island, is hypothesized as a mechanism for these elevated concentrations in mussels. Levels of other synthetic organic hydrocarbons were generally low, with chlordanes showing higher concentrations in the more urbanized locations of the study area, i.e. the Monterey Harbor Jetty.  相似文献   

20.
Acoustic Doppler current profiles and current meter data are combined with wind observations to describe the transport of water leaving Florida Bay and moving onto the inner shelf on the Atlantic side of the Florida Keys. A 275-day study in the Long Key Channel reveals strong tidal exchanges, but the average ebb tide volume leaving Florida Bay is 19% greater than the average flood tide volume entering the bay. The long-term net outflow averages 472 m3 s−1. Two studies in shelf waters describe the response to wind forcing during spring and summer months in 2004 and during fall and winter months in 2004–2005. During the spring–summer study, southeasterly winds have a distinct shoreward component, and a two-layer pattern appears. Surface layers move shoreward while near-bottom layers move seaward. During the winter study, the resultant wind direction is parallel to the Keys and to the local isobaths. The entire water column moves in a nearly downwind direction, and across-shelf transport is relatively small. During the summer wet season, Florida Bay water should be warmer, fresher, and thus less dense than Atlantic shelf waters. Ebbing bay water should move onto the shelf as a buoyant plume and be held close to the Keys by southeasterly winds. During the winter dry season, colder and saltier Florida Bay water should leave the tidal channels with relatively high density and be concentrated in the near-bottom layers. But little across-shelf flow occurs with northeasterly winds. The study suggests that seasonally changing wind forcing and hydrographic conditions serve to insulate the reef tract from the impact of low-quality bay water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号