首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mineral assemblages displayed by MORB and alkali-poor olivine tholeiites have been investigated over the pressure interval 4.6–18 GPa at 1200°C. Both compositions crystallize to form normal eclogites between 4.6 and 10 GPa and there is little change in the relative proportions of garnet and pyroxene over this range. However, the proportion of garnet increases rapidly above 10 GPa as pyroxene dissolves in the garnet structure and pyroxene-free garnetites (±stishovite) are produced by 14–15 GPa, dependent upon composition. The garnetite facies for both compositions possess zero-pressure densities of 3.75 g/cm3, implying that subducted oceanic crust remains appreciably denser than surrounding mantle to depths exceeding 600 km. It is demonstrated that the seismic velocity distributions in the mantle between 400 and 650 km are inconsistent with Anderson's hypothesis that this region is of eclogitic composition.  相似文献   

2.
Lower crustal high grade metamorphic rocks have been successively found at Pamirs nearby the western Himalayan syntaxis, Namjagbarwa and Dinggye nearby the eastern Himalayan syntaxis and the central segment of the Himalayan Orogenic Belt, respec-tively[1―4]. In particular, some researchers deduced that there were probably eclogites at some locations[5]. Moreover, some geochronological data of these lower crustal granulites also have been accumulated. For example, the high-pressure granulit…  相似文献   

3.
The abundance patterns of nitrogen, and chlorine in retrogressed granulite facies gneisses from southern East Greenland exhibit strong enrichment in the vicinity of small-scale shear zones. Sulfur in the shear zones occurs at the same concentration levels as in the adjacent country rock, but is depleted in the transition zone between shear zone and country rock. Within the shear zone sulfur occurs as sulfate, whereas in the country rock granulites it occurs as sulfide. Recrystallization of rock in the shear zone to scapolite-bearing, hornblende-absent assemblages, along with changes in the major element chemistry, demonstrates that these zones define migration pathways of chemically reactive fluids. Consideration of the computed fluid compositions, and of the mass ratios of chlorine/sulfur and nitrogen/sulfur demonstrate that the fluid equilibrated with continental crust prior to its passage through gneisses in the study area. Previous suggestions have been made that the mantle may act as a source region for nitrogen-rich fluids. However, equilibration of these S-, N- and Cl-rich fluids with crustal material precludes the use of element abundances to identify a mantle signature; the bulk of these fluid constituents must be considered crustal derived.  相似文献   

4.
Thermal state, rheology and seismicity in the pannonian basin, Hungary   总被引:1,自引:0,他引:1  
On the basis of data on crustal structure and terrestrial heat flow, a 3-D geothermal model for the lithosphere in the Pannonian basin, Hungary, has been calculated. This model, together with information on crustal composition, laboratory data on rock friction, and certain assumptions about fluid conditions and strain-rate levels within the lithosphere, has been used to construct a rheological model of the area.The results obtained show a layered rheological structure where an aseismic part of the crust is “sandwiched” between an upper and a lower seismogenic crustal layers. According to the proposed rheological model, seismic activity in the upper crust may be expected down to depths of 10–12 km, which is confirmed well by the observed depth distribution of seismicity. The model also predicts a lower crustal seismogenic layer down to 20–22 km. Because of infrequent occurrences of deep earthquakes and/or a generally small number of reliable hypocenter depth determinations in the study area, this seismogenic zone is less constrained by observations.The depth of the different rheologic horizons within the crust is governed mainly by thermal conditions. The lower boundary of both seismogenic layers appears isothermal. Brittle-ductile transition in the upper crust coincides with the ˜200 °C isotherm, while in the lower crust it coincides with the ˜ 375 °C isotherm. The lowermost crust and the upper mantle beneath Hungary show ductile behavior, thus the possibility of siesmic activity at these horizons can be excluded.  相似文献   

5.
Abstract Eclogites occur in three districts of the northern and southern parts of Tien-Shan. Three eclogites collected from the Aktyuz, Makbal and Atbashy districts were analyzed; the P-T paths of three eclogites were estimated by analyzing compositional growth zoning and retrograde reaction of garnet and omphacite. Aktyuz and Makbal eclogites have not preserved the prograde path. An Aktyuz eclogite that underwent a quartz eclogite facies metamorphism (about T = 600°C, P = 12 kbar) has recorded three stages of retrograde metamorphism. Four stages of retrograde metamorphism were recognized in a Makbal eclogite; the garnet-omphacite geothermometer gave about T = 560°C at 20 kbar as the highest metamorphic condition. Garnet from a garnetchloritoid-talc schist of the Makbal district includes quartz pseudomorphs after coesite; some units evidently underwent a low-temperature part of coesite eclogite fades metamorphism. Prograde and retrograde paths were recognized in an Atbashy eclogite; five stages of metamorphic reaction were observed in the Atbashy sample. The prograde path from stage I to stage III has been recorded in garnet and omphacite in which quartz pseudomorphs after coesite are included. The peak metamorphism of stage III took place at about 660°C at 25 kbar. The stages IV and V are retrograde. UHP eclogite facies metamorphism took place twice in Kyrghyzstan. The Aktyuz and Atbashy eclogites gave Rb-Sr mineral-isochron ages of about 750 Ma and 270 Ma, respectively. The K-Ar age of paragonite from the Makbal eclogite is about 480 Ma.  相似文献   

6.
Continental shield regions are normally characterized by low-to-moderate mantle heat flow. Archaean Dharwar craton of the Indian continental shield also follows the similar global pattern. However, some recent studies have inferred significantly higher mantle heat flow for the Proterozoic northern block of Southern Granulite Terrain (SGT) in the immediate vicinity of the Dharwar craton by assuming that the radiogenic elements depleted exposed granulites constitute the 45-km-thick crust. In this study, we use four-layered model of the crustal structure revealed by integrated geophysical studies along a geo-transect in this region to estimate the mantle heat flow. The results indicate that: (i) the mantle heat flow of the northern block of SGT is 17 ± 2 mW/m2, supporting the global pattern, and (ii) the lateral variability of 10–12 mW/m2 in the surface heat flow within the block is of crustal origin. In terms of temperature, the Moho beneath the eastern Salem–Namakkal region appears to be at 80–100 °C higher temperature than that beneath the western Avinashi region.  相似文献   

7.
Heterogeneous δ18O values as low as - 2.6‰ to+7.0% are observed for ultrahigh pressure eclogites from the Dabie Mountains in East China. Oxygen isotope equilibrium has been approached between the eclogite minerals, suggesting that the rocks would have acquired the unusual δ18O values prior to ultrahigh pressure metamorphism by interaction with18O-depleted fluid. δD values of hydroxyl-bearing are between — 51% and - 83‰, precluding the possibility of paleoseawater involvement. The only likely fluid is ancient meteoric water that exchanged oxygen isotopes with the eclogite precursor (a kind of basaltic rocks) formerly resident on the continental crust. This suggests a crustal recycling process in the suture zone of late subduction. Because silicate minerals undergo rapid oxygen isotope exchange at mantle pressures, preservation of the isotopic signature of meteoric water in the eclogites indicates limited crust-mantle interaction and thus a short residence time (<20 Ma) when the plate containing the eclogite precursor was subducted to mantle depths. The agreement in oxygen isotope temperatures for different mineral pairs suggests a rapid cooling and ascent process for the eclogites subsequent to their formation at mantle depths. Project supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences.  相似文献   

8.
Up to now the age of granulite gneisses intruded by the Zabargad mantle diapir has been an unsolved problem. These gneisses may represent either a part of the adjacent continental crust primarily differentiated during the Pan African orogeny, or new crust composed of Miocene clastic sediments deposited in a developing rift, crosscut by a diabase dike swarm and gabbroic intrusions, and finally metamorphosed and deformed by the mantle diapir. Previous geochronological results obtained on Zabargad island and Al Lith and Tihama-Asir complexes (Saudi Arabia) suggest an Early Miocene age of emplacement for the Zabargad mantle diapir during the early opening of the Red Sea rift. In contrast, SmNd and RbSr internal isochrons yield Pan African dates for felsic and basic granulites collected 500–600 m from the contact zone with the peridotites. Devoid of evidence for retrograde metamorphic, minerals from a felsic granulite provide well-defined RbSr and SmNd dates of 655 ± 8 and 699 ± 34 Ma for the HP-HT metamorphic event (10 kbar, 850°C). The thermal event related to the diapir emplacement is not recorded in the SmNd and RbSr systems of the studied gneisses; in contrast, the development of a retrograde amphibolite metamorphic paragenesis strongly disturbed the RbSr isotopic system of the mafic granulite. The initial143Nd/144Nd ratio of the felsic granulite is higher than the contemporaneous value for CHUR and is in agreement with other Nd isotopic data for samples of upper crust from the Arabian shield. This result suggests that source rocks of the felsic granulite were derived at 1.0 to 1.2 Ga from either an average MORB-type mantle or a local 2.2 Ga LREE-depleted mantle. Zabargad gneisses represent a part of the disrupted lower continental crust of the Pan African Afro-Arabian shield. During early stages of the Red Sea rifting in the Miocene, these Precambrian granulites were intruded and dragged upwards by a rising peridotite diapir.  相似文献   

9.
Recent work in a previously little-known part of the Central Gneiss Belt of the southwestern Grenville Province has outlined a regional structural pattern made by a number of geologically distinctive domains that are separated by broad ductile shear zones. Characteristics rock assemblages, metamorphism, geophysical signatures and structural trends are modified or truncated at domain margins. Bounding high strain zones contain mylonite and other forms of tectonically modified gneiss, formed under at least middle amphibolite facies conditions, within which kinematic indicators imply a northwesterly sense of overriding or lateral sliding between adjacent crustal masses. Similar kinematics also apply at the margin of the Central Metasedimentary Belt to the southeast and along the Grenville Front to the northwest. A scenario involving northwesterly stacking of large crustal blocks and slices at relatively deep level can account for the observed relationships and implies a period of crustal thickening that may represent the culmination of the Grenvillian Orogeny in this region.  相似文献   

10.
The Mt Somers Volcanics are part of a suite of mid-Cretaceous (89 ± 2 Ma) intermediate to silicic volcanics, erupted onto an eroded surface of Torlesse sediments. Rock types vary from basaltic andesite to high-silica rhyolite. Andesites are medium- to high-K with phenocrysts of plagioclase, orthopyroxene and pigeonite. Dacites are peraluminous and commonly contain granulite facies xenoliths and garnet xenocrysts. Equilibrium mineral assemblages indicate metamorphic pressures of close to 6 kbar at 800°C. Rhyolites are peraluminous with phenocrysts of quartz, sanidine, plagioclase, biotite, garnet and orthopyroxene. The ferromagnesian phases show textural evidence of magmatic crystallization and are chemically distinct from xenocryst phases in dacites. Equilibrium assemblages indicate that early magmatic crystallization occurred at close to 7 kbar (20 km depth) at above 850°C, with melt-water contents of less than 3.5%. Major-element contents, trace-element contents and an initial 87Sr/86Sr ratio of 0.7085 indicate that the rhyolites formed by partial melting of dominantly quartzo-feldspathic Torlesse sediments, leaving a granulite-facies residue. The chemical variation displayed by the rhyolites is best explained by fractional crystallization of the observed high-pressure phenocryst assemblage. Most elements show a compositional gap between rhyolite and dacite. The major-element, trace-element and Sr isotope compositions of the intermediate lavas are best explained by assimilation of lower crustal material combined with fractional crystallization in mantle-derived tholeiitic magmas. Magmatism was the result of heat and magma flux from the mantle, during the change from compressive to extensional tectonics after the culmination of the Rangitata Orogeny.  相似文献   

11.
The Baikal is a deep long and narrow basin in East Siberia which follows a huge fault zone adjoining the Siberian Platform. The basin was formed by rapid subsidence of continental crust during the pas 3–4 Ma. It is bounded by normal faults which indicate extension of the crust during the subsidence. According to seismic reflection profiling data, the intensity of extension is not large (3–7%). It is much smaller than the thinning of the crystalline crust under the basin (up to 38%). The thinning and crustal subsidence can be explained by the transformation of gabbro in the lower crust into dense garnet granulites. The latter rocks (with Vp 7.7−7.8 km/sec) are still located under the remnant part of the crust. Rapid transformation took place due to an inflow of catalyzing fluid along the fault zone from the asthenospheric upwelling. This upwelling, which is at a depth of 80–90 km, caused a general uplift of a broad area in the south of East Siberia.  相似文献   

12.
H. Tabata  S. Maruyama  & Z. Shi 《Island Arc》1998,7(1-2):142-158
The ultrahigh- and high-pressure (UHP–HP) metamorphic belt of the Dabie Mountains, central China, formed by the Triassic continental subduction and collision, is divided into four metamorphic zones; from south to north, the greenschist facies zone, epidote amphibolite to amphibolite facies zone, quartz eclogite zone, and coesite eclogite zone, based on metabasite mineral assemblages. Most of the coesite-bearing eclogites consist mainly of garnet and omphacite with homogeneous compositions and have partially undergone hydration reactions to form clinopyroxene + plagioclase + calcic amphibole symplectites during amphibolite facies overprinting. However, the least altered eclogites sometimes contain garnet and omphacite that preserve compositional zoning patterns which may have originated during their growth at peak temperature conditions of ∼ 750 °C, suggesting a short duration of UHP metamorphic conditions and/or consequent rapid cooling during exhumation. Systematic investigation on peak metamorphic temperatures of coesite eclogite have revealed that, contrary to the general trend of metamorphic grade in the southern Dabie unit, the coesite eclogite zone shows rather flat thermal structure (T = 600 ± 50 °C) with the highest temperature reaching up to 850 °C and no northward increase in metamorphic temperature, which is opposed to the previous interpretations. This feature, along with the preservation of compositional zonation, implies complicated differential movement of each eclogite mass during UHP metamorphism and the return from the deeper subduction zone at mantle depths to the surface.  相似文献   

13.
Garnet grains in Sanbagawa quartz eclogites from the Besshi region, central Shikoku commonly show a zoning pattern consisting of core and mantle/rim that formed during two prograde stages of eclogite and subsequent epidote–amphibolite facies metamorphism, respectively. Garnet grains in the quartz eclogites are grouped into four types (I, II, III, and IV) according to the compositional trends of their cores. Type I garnet is most common and sometimes coexists with other types of garnet in a thin section. Type I core formed with epidote and kyanite during the prograde eclogite facies stage. The inner cores of types II and III crystallized within different whole‐rock compositions of epidote‐free and kyanite‐bearing eclogite and epidote‐ and kyanite‐free eclogite at the earlier prograde stage, respectively. The inner core of type IV probably formed during the pre‐eclogite facies stage. The inner cores of types II, III, and IV, which formed under different P–T conditions of prograde metamorphism and/or whole‐rock compositions, were juxtaposed with the core of type I, probably due to tectonic mixing of rocks at various points during the prograde eclogite facies stage. After these processes, they have shared the following same growth history: (i) successive crystal growth during the later stage of prograde eclogite facies metamorphism that formed the margin of the type I core and the outer cores of types II, III, and IV; (ii) partial resorption of the core during exhumation and hydration stage; and (iii) subsequent formation of mantle zones during prograde metamorphism of the epidote–amphibolite facies. The prograde metamorphic reactions may not have progressed under an isochemical condition in some Sanbagawa metamorphic rocks, at least at the hand specimen scale. This interpretation suggests that, in some cases, material interaction promoted by mechanical mixing and fluid‐assisted diffusive mass transfer probably influences mineral reactions and paragenesis of high‐pressure metamorphic rocks.  相似文献   

14.
Hydrothermal alteration zones have been investigated by X-ray diffraction, mineralogical–petrographical techniques, and geochemical analysis. Examination of cores and cuttings from two drill sites, obtained from a depth of about 814–1020 m, show that the hydrothermal minerals occuring in the rock include: K-feldspar, albite, chlorite, alunite, kaolinite, smectite, illite, and opaque minerals.In the studied area, silicified, smectite, illite, alunite, and opal zones have been recognized. These alteration mineral assemblages indicate that there are geothermal fluids, which have temperatures of 150–220°C in the reservoir.The distribution of the hydrothermal minerals shows changes in the chemical composition of the hydrothermal fluid, which are probably due not only to interaction with host rock, but also to dilution of the Na–K–Cl-rich hydrothermal fluid of the deep reservoir by cold sea water at shallow levels. Geochemical analyses of the solid and liquid phases indicate that the hydrothermal fluids of the Tuzla geothermal system are in equilibrium with alteration products.The tectonic structure of the studied area is caused by NW–SE and NE–SW directional forces. The volcanic rocks where hydrothermal zones are observed in the studied area are of Lower–Middle Miocene age comprise latite, andesite, dacite, rhyolite-type lavas, tuff, and ignimbrites.  相似文献   

15.
The oxygen isotope composition of minerals from quartz veins and host eclogites in the Dabie terrane was measured in order to place geochemical constraints on the origin and transport of metamorphic fluid. The results are discussed together with structural and petrological relationships between quartz vein and wallrock. The quartz veins can be temporally classified into three groups: (1) synmetamorphic vein which would be formed prior to eclogite-facies recrystallization when they were exhumated from mantle depths to deep crustal levels; (2) early retrogressive vein which was formed in the early stage of eclogite exhumation subsequent to the recrystallization, the vein-forming fluid is still relevant to the eclogites; (3) late retrogressive vein which was formed in the late stage of eclogite exhumation from deep crustal to upper crustal levels, oxygen isotope fractionation between vein quartz and host eclogite significantly deviates from equilibrium values and the vein-forming fluid was principally derived from granitic gneiss hosting the eclogites. For the synmetamorphic vein, it appears that local advective transport of fluid is the predominant mechanism in the processes of vein precipitation; the scale of oxygen isotope homogenization within the veins is much larger than that within the associated eclogites. The vein-forming fluid would be derived from the exsolution of dissolved hydroxyls within eclogite minerals due to significant pressure decrease. Fluid flow prior to the eclogite-facies recrystallization and the early retrogression may occur mainly along pressure gradients.  相似文献   

16.
We have analyzed the Sm–Nd and Rb–Sr whole-rock and mineral isotope systematics of garnet peridotites and associated eclogites and migmatitic gneisses from the Nonsberg–Ulten zone of the Eastern Alps. The garnet peridotites include coarse-grained varieties, characterized by well-preserved to slightly modified mantle geochemical signatures, and finer-grained varieties enriched in amphibole and LILE. Hydration of some of the most strongly deformed, fine-grained peridotites by crustal fluids caused isotopic disequilibrium between the peridotite minerals, preventing accurate age determinations. The coarse-grained peridotites, the eclogites and the country migmatitic gneisses yield garnet–whole-rock and garnet–clinopyroxene Sm–Nd ages that indicate for all rock types an isotopic homogenization event at ca. 330 Ma. The similar ages suggest that all rock types shared a common history since the incorporation of the peridotites in the crust, and constrain the garnet-facies metamorphism of the peridotites, as well as partial melting of the crust, to an episode of crustal subduction at the end of the Variscan orogenic cycle.  相似文献   

17.
标定大陆科学钻探孔区地震反射体   总被引:18,自引:7,他引:18       下载免费PDF全文
在中国大陆科学钻探孔区 (江苏省东海县南部 )进行了系统的地球物理调查 ,包括二维地震测网和专门的地震剖面 ,大地电磁法和位场方法等 .地震调查表明 ,在超高压变质岩出露区上地壳充满了反射体 ,包括倾斜反射体与上拱的反射弧 .本文介绍大陆科学钻探先行研究中地震调查的成果 .根据大陆科学钻探预先导孔的岩芯和测井资料、井旁VSP和数值模拟结果证实 ,高波速的榴辉岩体、破碎断裂带和大型韧性剪切带都可引起倾斜的地震反射 ,而上拱的弧形反射体则是由近似直立的榴辉岩体和其中的破碎带的综合反映 .由于地壳深部广泛分布着经受变质的岩石 ,上述研究结果对标定地壳中的反射地震信号具有一定意义  相似文献   

18.
An attempt is made to obtain a combined geophysical model along two regional profiles: Black Sea— White Sea and Russian Platform—French Central Massif. The process of the model construction had the following stages: 1. The relation between seismic velocity (Vp, km/s) and density (σ, g/cm3) in crustal rocks was determined from seismic profiles and observed gravity fields employing the trial and error method. 2. Relations between heat production HP (μW/m3), velocity and density were established from heat flow data and crustal models of old platforms where the mantle heat flow HFM is supposed to be constant. The HFM value was also determined to 11 ± 5 mW/m2. 3. A petrological model of the old platform crust is proposed from the velocity-density models and the observed heat flow. It includes 10–12 km of acid rocks, 15–20 km of basic/metamorphic rocks and 7–10 km of basic ones. 4. Calculation of the crustal gravity effects; its substraction from the observed field gave the mantle gravity anomalies. Extensively negative anomalies have been found in the southern part of Eastern Europe (50–70 mgal) and in Western Europe (up to 200 mgal). They correlate with high heat flow and lower velocity in the uppermost mantle. 5. A polymorphic advection mechanism for deep tectonic processes was proposed as a thermal model of the upper mantle. Deep matter in active regions is assumed to be transported (advected) upwards under the crust and in its place the relatively cold material of the uppermost mantle descends. The resulting temperature distribution depends on the type of endogeneous regime, on the age and size of geostructure. Polymorphic transitions were also taken into account.  相似文献   

19.
Low temperature eclogite facies metamorphism in Western Tianshan, Xinjiang   总被引:3,自引:0,他引:3  
According to the field occurrences and petrological study, the low temperature eclogite facies metamorphic rocks in Western Tianshan of Xinjiang can be divided into five types: (i) massive glaucophane-epidote eclogites and glaucophane-paragonite eclogites; (ii) schistose or gneissic mica eclogites; (iii) banded calcite eclogites; (iv) pillow glaucophane eclogites; (v) garnet-omphacite quartzites. Their eclogite facies metamorphism has undergone four stages of evolution: (i) pre-peak lawsonite-blueschist facies stage,T = 350–4000°C,P = 0.7–0.9 GPa; (ii) peak eclogite facies stage,T = 530 ± 20°C,P = 1.6–1.9 GPa; (iii) retrograde epidote-blueschist facies stage, T=500–530°C,P = 0.9–1.2 GPa and (iv) retrograde blueschist-greenschist facies stage,T= 450–550°C,P= 0.7–0.8 GPa. The metamorphic PT path of Western Tianshan eclogites is characterized by clockwise ITD resulting from the subduction of Tarim plate northward to Yili-Central Tianshan plate followed by fast uplift to the surface. But there were at least two stages of blueschist facies retrograde metamorphism overprinted during their uplift.  相似文献   

20.
The lower crust is generally considered to be an aseismic, weak zone where fluid distribution might be governed by textural equilibrium geometries. Saline fluids below the transition from brittle to ductile rheology have been advanced as a joint explanation for deep crustal conductivity and seismic reflectivity, the depth of onset of both phenomena being apparently bounded by isotherms in the 300–450 °C temperature range. Some petrologists, meanwhile, contest that the deep crust should be devoid of extensive fluid networks. This review exposes some geophysical exceptions to the statistical norm suggested by global geophysical data compilations and presents counter-arguments that the lower crust in places may be both dry and strong, that fluids if at all present at such depths may not necessarily be connected and that fluid mobility in the lower crust may be more limited and heterogeneous than commonly assumed.Laboratory data on crustal rocks implies that the transition from brittle to ductile rheology actually occurs over a much broader range of temperatures than 300–450 °C, and the apparent association of deep crustal conductive horizons with a temperature field of 300–450 °C may be interpretable in terms of formation temperatures of graphite, rather than fluids and brittle-ductile transition rheology.High vP/vS ratios from a 6 km thick, seismically layered zone below the Weardale granite, NE England can be explained by underplated mafic material. They are unlikely to be explained by fluids in an area where deep crustal conductance has been shown to be relatively low, unless conventional assumptions regarding deep crustal fluid distribution are inadequate or false.Perusal of the literature reveals that lower crustal seismicity is less seldom than generally appreciated. Interpretation of earthquakes nucleating at lower crustal depths is ambiguous, but in some tectonic regimes may indicate preservation of brittle rheology to the Moho and a lower crust that is predominantly mafic and dry.A better understanding of lower crustal deformation mechanisms and history may provide better insight into deep crustal conductivity mechanisms. Recent rock mechanical experiments suggest that permeability (and thus fluid connectivity) may be decreased by ductile shearing, whereas ductile shearing may aid graphitisation at lower crustal temperatures. If the lower crust in some regions is strong, this may explain the apparent preservation of both extant- and palaeostress orientations in interpretations involving electrical anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号