首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
新型可更换连梁研究进展   总被引:1,自引:0,他引:1  
联肢剪力墙是高层建筑结构中广泛采用的抗侧力结构体系,而连梁是联肢剪力墙结构中重要的耗能构件。然而,不论是传统的钢筋混凝土连梁还是钢连梁或型钢混凝土组合连梁破坏后修复或更换都比较困难,代价昂贵。近年来,国内外的部分学者开始研究可更换连梁,使连梁在受损后易于修复或更换,减小连梁修复费用。本文首先提出了可更换连梁的定义和分类,然后对目前国内外可更换连梁的研究现状进行了比较全面的总结,特别是介绍了2012年9月第15届世界地震工程会议上展示的相关研究成果,最后对可更换连梁的研究未来做了展望。  相似文献   

2.
钢筋混凝土核心筒性态水平及性能指标限值研究   总被引:1,自引:0,他引:1  
结合国内外对钢筋混凝土结构性能水平的划分标准并根据核心筒结构破坏特征及抗震性能要求,文中在现行规范基础上进一步细分,将钢筋混凝土核心筒结构的性能水准划分为良好使用、暂时使用、生命安全和接近倒塌4个水平;基于混凝土连梁及剪力墙构件的受力、变形及破坏特点,分别提出了连梁及剪力墙构件对应于4个性能水平的失效判别标准和变形限值...  相似文献   

3.
周斌 《高原地震》2004,16(4):34-41
根据高层建筑的不同结构类型讨论了高层建筑震害预测方法,分析了东营市城区高层建筑在Ⅵ-Ⅹ度下抗御震害的能力。东营市城区高层建筑普遍具有抗御Ⅷ度地震作用的能力,在Ⅸ度地震作用下,各建筑仍具有一定的延性,不致被毁坏。框架结构高层建筑的抗震能力相对较弱,在Ⅷ度地震作用下即发生中等破坏,剪力墙和框架一剪力墙结构的高层建筑在本地区设防烈度(Ⅶ度)的地震作用下至多发生轻微破坏,呈现出良好的抗震能力。  相似文献   

4.
连梁是剪力墙结构中重要的耗能构件,小跨高比连梁通常具有延性差,耗能能力薄弱等缺陷,不能起到保护墙肢的作用。半通缝连梁可有效改善小跨高比连梁的延性[1]。为进一步探究带有半通缝连梁的剪力墙结构的抗震性能,包括:延性系数、耗能能力等抗震性能参数,以及验证半通缝连梁剪力墙结构的破坏机理。基于有限元软件ABAQUS建立3种不同连梁形式的单片双肢剪力墙结构数值模型,对结构的低周反复试验进行仿真,以分析3种截面形式连梁的单片双肢剪力墙结构在低周往复荷载作用下的承载能力、耗能能力和延性。研究表明:半通缝连梁剪力墙结构可以兼顾双连梁剪力墙结构的延性和深连梁剪力墙结构的开裂前刚度,耗能性能与双连梁剪力墙结构相近,承载力较双连梁剪力墙结构高,抗震性能良好。  相似文献   

5.
混合暗支撑高阻尼混凝土联肢剪力墙是一种新型延性双肢剪力墙,它将暗支撑引入双肢墙的两个墙肢,将内置带剪力钉钢板连梁作为剪力墙洞口连梁,墙身由高阻尼混凝土浇筑而成.本文对这种新型联肢剪力墙结构进行了低周反复加载实验与数值模拟,较系统地分析了该新型剪力墙结构的承载力、延性、耗能、破坏机制、破坏特征以及刚度衰减过程等性能.结果表明:与现有暗支撑混凝土联肢剪力墙相比,混合暗支撑高阻尼混凝土联肢剪力墙开裂强度、极限承载力、耗能能力及变形能力均有一定程度的提高,显示了良好的抗震性能;当剪力墙连梁跨高比越小,混合暗支撑高阻尼混凝土剪力墙的抗震性能越好.  相似文献   

6.
型钢混凝土低矮剪力墙抗震性能试验研究   总被引:4,自引:2,他引:2  
剪力墙构件是现代高层建筑结构中的主要抗侧向力构件.为了对比型钢桁架混凝土组合低矮剪力墙与型钢框架混凝土组合低矮剪力墙以及普通钢筋混凝土低矮剪力墙在地震作用下的抗震性能,本文进行了四榀1/4缩尺模型的低矮混凝土剪力墙在单调和低周反复荷载作用下的对比试验,其中单调加载试验包括一榀内置型钢桁架的型钢混凝土组合低矮剪力墙,反复加载试验包括一榀普通钢筋混凝土低矮剪力墙、一榀内置型钢框架的型钢混凝土低矮剪力墙和一榀内置型钢桁架的型钢混凝土低矮剪力墙,给出了各试件的刚度、承载力、变形、延性和破坏形态等试验结果,并对其进行分析.试验结果表明,在这三种墙体中,型钢桁架混凝土组合低矮剪力墙的承载力、变形能力、耗能能力较其他类型剪力墙好,并为型钢桁架混凝土组合低矮剪力墙在实际中的应用提供了试验依据.  相似文献   

7.
本文主要论述了基于中国规范的剪力墙构件性能指标限值的研究思路和方法。首先根据规范的相关震害概念,提出小震、中震、大震三种地震水准下剪力墙构件的基本性能要求,然后通过对剪力墙构件的破坏形态及其影响因素的分析,给出剪力墙构件的分类及其性能指标限值的确定方法,并讨论了对结构中的剪力墙进行构件划分的方法,最后对剪力墙构件性能指标限值合理性的检验进行了论述。  相似文献   

8.
空心砖砌体填充墙框架结构是我国现阶段应用广泛的建筑结构形式之一。2008年四川汶川地震和2013年四川芦山地震中,不同地震烈度区均有大量填充墙框架结构发生不同程度的震害。基于广泛且深入的现场调研,系统介绍了空心砖填充墙的震害特征,并探讨了其震害原因。研究发现,空心砖砌体填充墙在地震中极易发生破坏,即使在地震烈度相当于或低于设防烈度的地区,空心砖砌体填充墙的震害亦非常普遍。空心砖砌体强度低、门窗洞口或墙内管线对填充墙的削弱、以及楼梯间形成的抗震薄弱部位等都是造成空心砖填充墙极易发生震害的原因。现行规范所规定的拉结筋、构造柱和水平系梁等抗震构造措施,对防止地震中填充墙整体平面外坍塌有一定的贡献,但不能有效改善填充墙自身平面内的拉压承载能力。空心砖填充墙发生严重破坏时,框架梁柱可能仍完好无损。建议抗震设防类别为甲类、乙类和装修标准很高的丙类建筑,不宜采用空心砖砌体填充墙。  相似文献   

9.
高层建筑的震害预测   总被引:2,自引:0,他引:2  
本文提出一个以结构层延伸率为判定指标的高层建筑震害预测方法,该方法可用于对钢筋混凝土框架结构、框架-剪力墙结构的高层建筑进行震害预测,文中最后给出了一个住宅楼震害预测结果。  相似文献   

10.
进行了1个1/7缩尺、剪跨比为2.0的带矩形钢管混凝土叠合柱边框内藏钢桁架深连梁联肢剪力墙模型的低周反复荷载试验。分析了该剪力墙的承载力、延性、滞回特性、耗能能力等抗震性能,研究了内藏钢桁架对该联肢剪力墙抗震性能的影响。试验研究表明:内藏钢桁架深连梁联肢剪力墙具有较好的延性;内藏钢桁架混凝土连梁对提高剪力墙的承载力及延性作用显著;带钢管混凝土叠合柱的翼墙可充分发挥钢管混凝土叠合柱抗压能力强、承载力高、不易开裂、延性好的优势;该新型组合剪力墙实现了"强墙肢、弱连梁"的延性屈服机制。  相似文献   

11.
2017年5月11日新疆塔什库尔干5.5级地震给震区建筑结构造成了不同程度破坏。选择震区钢筋混凝土(RC)框架结构、砖混结构以及土石木结构等3类典型建筑结构,介绍了各类建筑结构地震破坏特点,分析了震害特征与破坏机理。结果表明:RC框架结构在地震中表现出了优异的抗震性能,即使在震中区,破坏也仅仅表现为非结构性破坏,如填充墙开裂和吊顶脱落等;砖混结构绝大多数抗震性能优良,仅震中区的少数建筑物发生了承重墙墙体开裂情况;土石木结构房屋抗震性能最差,地震破坏最为严重,是导致该次地震人员伤亡主要原因。建议地震高烈度设防区房屋建筑应采用抗震性能较好的RC框架结构和砖混结构,而抗震性能差的土石木建筑房屋应尽量避免继续建设和使用。结果可供类似地区房屋建设和建筑结构抗震设计等工作参考。  相似文献   

12.
The outline and typical characteristics of damages to building in Jiangyou city and Anxian county (intensity Ⅷ), Mianyang city and Deyang city (intensity Ⅶ) are introduced in the paper. The damage ratios, based on the sample statistics of multi-story brick buildings together with multi-story brick buildings with RC frame at first story (BBF), are presented. Then some typical damages, such as horizontal cricks of brick masonry buildings, Ⅹ-shaped cricks on the walls under windows, the damages to columns, beams and infill walls of frame buildings and the damage to half circle-shaped masonry walls, are discussed.  相似文献   

13.
The 2014 magnitude 6.5 Ludian earthquake caused a death toll of 617, many landslides and tens of thousands of collapsed buildings. A field investigation to evaluate the damage to buildings was carried out immediately after the occurrence of the earthquake. Severely damaged aseismic buildings, which were basically observed in the downtown of Longtoushan Town, were carefully examined one by one with the aim to improve design codes. This paper summarizes the damage observed to the investigated aseismic buildings in both the structural and local levels. A common failure mode was observed that most of the aseismic buildings, such as RC frame structures and confined masonry structures, were similarly destroyed by severe damage or complete collapse of the first story. The related strong ground motion, which was recorded at the nearby station, had a short duration of less than 20 s but a very large PGA up to 1.0 g. The RC frames based on the new design codes still failed to achieve the design target for "strong column, weak beam". Typical local failure details, which were related to the interaction between RC columns and infill walls and between constructional columns and masonry walls, are summarized with preliminary analyses.  相似文献   

14.
Building damage in Dujiangyan during Wenchuan Earthquake   总被引:2,自引:1,他引:1  
A field damage survey of 1,005 buildings damaged by the Wenchuan Earthquake in Dujiangyan City was carried out and the resulting data was analyzed using the statistical method. It is shown that buildings that were seismically designed achieved the desired seismic fortification target; they sustained less damage than the non-seismically designed buildings. Among the seismically designed buildings investigated, RC frame buildings performed the best in terms of seismic resistance. Masonry buildings with a ground story of RC frame structure were the second best, and masonry buildings performed the worst. Considering building height, multistory buildings sustained more severe damage than high-rise buildings and 2- and 3-story buildings. Compared to residential buildings, public buildings, such as schools and hospitals, suffered more severe damage.  相似文献   

15.
Experimental tests have shown that unreinforced masonry (URM) infill walls are affected by simultaneous loading in their in-plane and out-of-plane directions, but there have been few attempts to represent this interaction in nonlinear time history analysis of reinforced concrete (RC) buildings with URM infill walls. In this paper, a recently proposed macro-model that accounts for this interaction is applied to the seismic analysis of RC framed structures with URM infill walls representative of Mediterranean building stock and practices. Two RC framed structures that are representative of low and mid-rise residential buildings are analysed with a suite of a bidirectional ground motions, scaled to three different intensities. During the analyses, the in-plane/out-of-plane interaction is monitored, showing that cracking of the infills occurs predominantly by in-plane actions, while failure occurs due to a combination of in-plane and out-of-plane displacements, with the out-of-plane component usually playing the dominant role. Along the frame height, the bottom storeys are generally the most damaged, especially where thin infill walls are used. These results are consistent with observations of damage to URM infill walls in similar buildings during recent earthquakes.  相似文献   

16.
A large number of buildings were seriously damaged or collapsed in the "5.12" Wenchuan earthquake. Based on field surveys and studies of damage to different types of buildings, seismic design codes have been updated. This paper briefly summarizes some of the major revisions that have been incorporated into the "Standard for classification of seismic protection of building constructions GB50223-2008" and "Code for Seismic Design of Buildings GB50011-2001." The definition of seismic fortification class for buildings has been revisited, and as a result, the seismic classifications for schools, hospitals and other buildings that hold large populations such as evacuation shelters and information centers have been upgraded in the GB50223-2008 Code. The main aspects of the revised GB50011-2001 code include: (a) modification of the seismic intensity specified for the Provinces of Sichuan, Shanxi and Gansu; (b) basic conceptual design for retaining walls and building foundations in mountainous areas; (c) regularity of building configuration; (d) integration of masonry structures and precast RC floors; (e) requirements for calculating and detailing stair shafts; and (f) limiting the use of single-bay RC frame structures. Some significant examples of damage in the epicenter areas are provided as a reference in the discussion on the consequences of collapse, the importance of duplicate structural systems, and the integration of RC and masonry structures.  相似文献   

17.
An earthquake with a magnitude of 5.7 $(\text{ M}_{\mathrm{L}})$ has struck Simav, Kutahya located in the western part of Turkey on May 19, 2011. The ground motion caused observable damage within 25 km radius from the epicenter. Although the earthquake is moderate, its effects on the structures are serious. This paper presents the observations on seismic damages of reinforced concrete (RC) and masonry structures. Common reasons of damage in RC buildings are: low quality of concrete, detailing mistakes of reinforcement, short column, pounding, overhangs and misconstructed gable and outer infill wall parts. Interesting cases related to these deficiencies are reported. Damages in the masonry buildings are due to lack of connection between orthogonal walls and unsuitable location and dimension of openings. The damages at structures are more noticeable at regions with unfavorable soil conditions like plain regions or foothills. However, on stiffer soils at hilly sides, the damages seem to be more limited and masonry structures are observed to be less affected compared to the RC ones. The damages in RC buildings found to be increasing with story number for light damage states. However, for heavier damage states, 4–5 story buildings are observed to be the most damaged.  相似文献   

18.
基于2013年4月20日四川芦山MS7.0地震灾区的房屋建筑震害调查资料, 初步分析了这次地震中建筑结构的震害特征. 结合典型建筑结构震害案例, 从抗震概念设计和抗震构造措施的角度对震害机理进行了探讨, 总结了结构抗震设计方面的经验和教训并给出了相关的建议. 分析表明, 农村自建的砖木和土木结构房屋的抗震能力普遍较差; 砖混结构和砌体-框架混合结构的抗震性能需要严格的抗震构造措施给予保证, 包括合理设置钢筋混凝土构造柱和圈梁, 合理设置承重墙的数量以及承重墙上开洞的数量和位置; 由于鞭梢效应造成的突出屋顶的楼梯间和加层的破坏需引起重视.   相似文献   

19.
This study focuses on the seismic safety evaluation of masonry buildings in Turkey for in‐plane failure modes using fragility curves. Masonry buildings are classified and a set of fragility curves are generated for each class. The major structural parameters in the classification of masonry buildings are considered as the number of stories, load‐bearing wall material, regularity in plan and the arrangement of walls (required length, openings in walls, etc.), in accordance with the observations from previous earthquakes and field databases. The fragility curves are generated by using time history (for demand) and pushover (for capacity) analyses. From the generated sets of fragility curves, it is observed that the damage state probabilities are significantly influenced from the number of stories and wall material strength. In the second stage of the study, the generated fragility curves are employed to estimate the damage of masonry buildings in Dinar after the 1995 earthquake. The estimated damage by fragility information is compared with the inspected visual damage as assessed from the Damage Evaluation Form. For the quantification of fragility‐based damage, a single‐valued index, named as ‘vulnerability score’ (VS), is proposed. There seems to be a fair agreement between the two damage measures. In addition to this, decisions regarding the repair or demolition of masonry buildings in Dinar due to visual damage inspection are on comparable grounds with the relative measure obtained from VS of the same buildings. Hence, the fragility‐based procedure can provide an alternative for the seismic safety evaluation of masonry buildings in Turkey. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Masonry buildings are primarily constructed out of bricks and mortar which become discrete pieces and cannot sustain horizontal forces created by a strong earthquake.The collapse of masonry walls may cause significant human casualties and economic losses.To maintain their integrity,several methods have been developed to retrofit existing masonry buildings,such as the constructional RC frame which has been extensively used in China.In this study,a new method using precast steel reinforced concrete(PSRC)panels is developed.To demonstrate its effectiveness,numerical studies are conducted to investigate and compare the collapse behavior of a structure without retrofitting,retrofitted with a constructional RC frame,and retrofitted with external PSRC walls(PSRCW).Sophisticated finite element models(FEM)were developed and nonlinear time history analyses were carried out.The results show that the existing masonry building is severely damaged under occasional earthquakes,and totally collapsed under rare earthquakes.Both retrofitting techniques improve the seismic performance of existing masonry buildings.However,it is found that several occasional earthquakes caused collapse or partial collapse of the building retrofitted with the constructional RC frame,while the one retrofitted by the proposed PSRC wall system survives even under rare earthquakes.The effectiveness of the proposed retrofitting method on existing masonry buildings is thus fully demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号