首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Future climate projections of Global Climate Models (GCMs) under different emission scenarios are usually used for developing climate change mitigation and adaptation strategies. However, the existing GCMs have only limited ability to simulate the complex and local climate features, such as precipitation. Furthermore, the outputs provided by GCMs are too coarse to be useful in hydrologic impact assessment models, as these models require information at much finer scales. Therefore, downscaling of GCM outputs is usually employed to provide fine-resolution information required for impact models. Among the downscaling techniques based on statistical principles, multiple regression and weather generator are considered to be more popular, as they are computationally less demanding than the other downscaling techniques. In the present study, the performances of a multiple regression model (called SDSM) and a weather generator (called LARS-WG) are evaluated in terms of their ability to simulate the frequency of extreme precipitation events of current climate and downscaling of future extreme events. Areal average daily precipitation data of the Clutha watershed located in South Island, New Zealand, are used as baseline data in the analysis. Precipitation frequency analysis is performed by fitting the Generalized Extreme Value (GEV) distribution to the observed, the SDSM simulated/downscaled, and the LARS-WG simulated/downscaled annual maximum (AM) series. The computations are performed for five return periods: 10-, 20-, 40-, 50- and 100-year. The present results illustrate that both models have similar and good ability to simulate the extreme precipitation events and, thus, can be adopted with confidence for climate change impact studies of this nature.  相似文献   

2.
This paper presents the results of an investigation into the problems associated with using downscaled meteorological data for hydrological simulations of climate scenarios. The influence of both the hydrological models and the meteorological inputs driving these models on climate scenario simulation studies are investigated. A regression‐based statistical tool (SDSM) is used to downscale the daily precipitation and temperature data based on climate predictors derived from the Canadian global climate model (CGCM1), and two types of hydrological model, namely the physically based watershed model WatFlood and the lumped‐conceptual modelling system HBV‐96, are used to simulate the flow regimes in the major rivers of the Saguenay watershed in Quebec. The models are validated with meteorological inputs from both the historical records and the statistically downscaled outputs. Although the two hydrological models demonstrated satisfactory performances in simulating stream flows in most of the rivers when provided with historic precipitation and temperature records, both performed less well and responded differently when provided with downscaled precipitation and temperature data. By demonstrating the problems in accurately simulating river flows based on downscaled data for the current climate, we discuss the difficulties associated with downscaling and hydrological models used in estimating the possible hydrological impact of climate change scenarios. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This paper assesses linear regression‐based methods in downscaling daily precipitation from the general circulation model (GCM) scale to a regional climate model (RCM) scale (45‐ and 15‐km grids) and down to a station scale across North America. Traditional downscaling experiments (linking reanalysis/dynamical model predictors to station precipitation) as well as nontraditional experiments such as predicting dynamic model precipitation from larger‐scale dynamic model predictors or downscaling dynamic model precipitation from predictors at the same scale are conducted. The latter experiments were performed to address predictability limit and scale issues. The results showed that the downscaling of daily precipitation occurrence was rarely successful at all scales, although results did constantly improve with the increased resolution of climate models. The explained variances for downscaled precipitation amounts at the station scales were low, and they became progressively better when using predictors from a higher‐resolution climate model, thus showing a clear advantage in using predictors from RCMs driven by reanalysis at its boundaries, instead of directly using reanalysis data. The low percentage of explained variances resulted in considerable underestimation of daily precipitation mean and standard deviation. Although downscaling GCM precipitation from GCM predictors (or RCM precipitation from RCM predictors) cannot really be considered downscaling, as there is no change in scale, the exercise yields interesting information as to the limit in predictive ability at the station scale. This was especially clear at the GCM scale, where the inability of downscaling GCM precipitation from GCM predictors demonstrates that GCM precipitation‐generating processes are largely at the subgrid scale (especially so for convective events), thus indicating that downscaling precipitation at the station scale from GCM scale is unlikely to be successful. Although results became better at the RCM scale, the results indicate that, overall, regression‐based approaches did not perform well in downscaling precipitation over North America. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Generally, the statistical downscaling approaches work less perfectly in reproducing precipitation than temperatures, particularly for the extreme precipitation. This article aimed to testify the capability in downscaling the extreme temperature, evaporation, and precipitation in South China using the statistical downscaling method. Meanwhile, the linkages between the underlying driving forces and the incompetent skills in downscaling precipitation extremes over South China need to be extensively addressed. Toward this end, a statistical downscaling model (SDSM) was built up to construct future scenarios of extreme daily temperature, pan evaporation, and precipitation. The model was thereafter applied to project climate extremes in the Dongjiang River basin in the 21st century from the HadCM3 (Hadley Centre Coupled Model version 3) model under A2 and B2 emission scenarios. The results showed that: (1) The SDSM generally performed fairly well in reproducing the extreme temperature. For the extreme precipitation, the performance of the model was less satisfactory than temperature and evaporation. (2) Both A2 and B2 scenarios projected increases in temperature extremes in all seasons; however, the projections of change in precipitation and evaporation extremes were not consistent with temperature extremes. (3) Skills of SDSM to reproduce the extreme precipitation were very limited. This was partly due to the high randomicity and nonlinearity dominated in extreme precipitation process over the Dongjiang River basin. In pre‐flood seasons (April to June), the mixing of the dry and cold air originated from northern China and the moist warm air releases excessive rainstorms to this basin, while in post‐flood seasons (July to October), the intensive rainstorms are triggered by the tropical system dominated in South China. These unique characteristics collectively account for the incompetent skills of SDSM in reproducing precipitation extremes in South China. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Many downscaling techniques have been developed in the past few years for projection of station‐scale hydrological variables from large‐scale atmospheric variables simulated by general circulation models (GCMs) to assess the hydrological impacts of climate change. This article compares the performances of three downscaling methods, viz. conditional random field (CRF), K‐nearest neighbour (KNN) and support vector machine (SVM) methods in downscaling precipitation in the Punjab region of India, belonging to the monsoon regime. The CRF model is a recently developed method for downscaling hydrological variables in a probabilistic framework, while the SVM model is a popular machine learning tool useful in terms of its ability to generalize and capture nonlinear relationships between predictors and predictand. The KNN model is an analogue‐type method that queries days similar to a given feature vector from the training data and classifies future days by random sampling from a weighted set of K closest training examples. The models are applied for downscaling monsoon (June to September) daily precipitation at six locations in Punjab. Model performances with respect to reproduction of various statistics such as dry and wet spell length distributions, daily rainfall distribution, and intersite correlations are examined. It is found that the CRF and KNN models perform slightly better than the SVM model in reproducing most daily rainfall statistics. These models are then used to project future precipitation at the six locations. Output from the Canadian global climate model (CGCM3) GCM for three scenarios, viz. A1B, A2, and B1 is used for projection of future precipitation. The projections show a change in probability density functions of daily rainfall amount and changes in the wet and dry spell distributions of daily precipitation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents the development of a probabilistic multi‐model ensemble of statistically downscaled future projections of precipitation of a watershed in New Zealand. Climate change research based on the point estimates of a single model is considered less reliable for decision making, and multiple realizations of a single model or outputs from multiple models are often preferred for such purposes. Similarly, a probabilistic approach is preferable over deterministic point estimates. In the area of statistical downscaling, no single technique is considered a universal solution. This is due to the fact that each of these techniques has some weaknesses, owing to its basic working principles. Moreover, watershed scale precipitation downscaling is quite challenging and is more prone to uncertainty issues than downscaling of other climatological variables. So, multi‐model statistical downscaling studies based on a probabilistic approach are required. In the current paper, results from the three well‐reputed statistical downscaling methods are used to develop a Bayesian weighted multi‐model ensemble. The three members of the downscaling ensemble of this study belong to the following three broad categories of statistical downscaling methods: (1) multiple linear regression, (2) multiple non‐linear regression, and (3) stochastic weather generator. The results obtained in this study show that the new strategy adopted here is promising because of many advantages it offers, e.g. it combines the outputs of multiple statistical downscaling methods, provides probabilistic downscaled climate change projections and enables the quantification of uncertainty in these projections. This will encourage any future attempts for combining the results of multiple statistical downscaling methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Skilful and reliable precipitation data are essential for seasonal hydrologic forecasting and generation of hydrological data. Although output from dynamic downscaling methods is used for hydrological application, the existence of systematic errors in dynamically downscaled data adversely affects the skill of hydrologic forecasting. This study evaluates the precipitation data derived by dynamically downscaling the global atmospheric reanalysis data by propagating them through three hydrological models. Hydrological models are calibrated for 28 watersheds located across the southeastern United States that is minimally affected by human intervention. Calibrated hydrological models are forced with five different types of datasets: global atmospheric reanalysis (National Centers for Environmental Prediction/Department of Energy Global Reanalysis and European Centre for Medium‐Range Weather Forecasts 40‐year Reanalysis) at their native resolution; dynamically downscaled global atmospheric reanalysis at 10‐km grid resolution; stochastically generated data from weather generator; bias‐corrected dynamically downscaled; and bias‐corrected global reanalysis. The reanalysis products are considered as surrogates for large‐scale observations. Our study indicates that over the 28 watersheds in the southeastern United States, the simulated hydrological response to the bias‐corrected dynamically downscaled data is superior to the other four meteorological datasets. In comparison with synthetically generated meteorological forcing (from weather generator), the dynamically downscaled data from global atmospheric reanalysis result in more realistic hydrological simulations. Therefore, we conclude that dynamical downscaling of global reanalysis, which offers data for sufficient number of years (in this case 22 years), although resource intensive, is relatively more useful than other sources of meteorological data with comparable period in simulating realistic hydrological response at watershed scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
We applied a simple statistical downscaling procedure for transforming daily global climate model (GCM) rainfall to the scale of an agricultural experimental station in Katumani, Kenya. The transformation made was two-fold. First, we corrected the rainfall frequency bias of the climate model by truncating its daily rainfall cumulative distribution into the station’s distribution based on a prescribed observed wet-day threshold. Then, we corrected the climate model rainfall intensity bias by mapping its truncated rainfall distribution into the station’s truncated distribution. Further improvements were made to the bias corrected GCM rainfall by linking it with a stochastic disaggregation scheme to correct the time structure problem inherent with daily GCM rainfall. Results of the simple and hybridized GCM downscaled precipitation variables (total, probability of occurrence, intensity and dry spell length) were linked with a crop model for a more objective evaluation of their performance using a non-linear measure based on mutual information based on entropy. This study is useful for the identification of both suitable downscaling technique as well as the effective precipitation variables for forecasting crop yields using GCM’s outputs which can be useful for addressing food security problems beforehand in critical basins around the world.  相似文献   

9.
In this study, the applicability of the statistical downscaling model (SDSM) in downscaling precipitation in the Yangtze River basin, China was investigated. The investigation includes the calibration of the SDSM model by using large-scale atmospheric variables encompassing NCEP/NCAR reanalysis data, the validation of the model using independent period of the NCEP/NCAR reanalysis data and the general circulation model (GCM) outputs of scenarios A2 and B2 of the HadCM3 model, and the prediction of the future regional precipitation scenarios. Selected as climate variables for downscaling were measured daily precipitation data (1961–2000) from 136 weather stations in the Yangtze River basin. The results showed that: (1) there existed good relationship between the observed and simulated precipitation during the calibration period of 1961–1990 as well as the validation period of 1991–2000. And the results of simulated monthly and seasonal precipitation were better than that of daily. The average R 2 values between the simulated and observed monthly and seasonal precipitation for the validation period were 0.78 and 0.91 respectively for the whole basin, which showed that the SDSM had a good applicability on simulating precipitation in the Yangtze River basin. (2) Under both scenarios A2 and B2, during the prediction period of 2010–2099, the change of annual mean precipitation in the Yangtze River basin would present a trend of deficit precipitation in 2020s; insignificant changes in the 2050s; and a surplus of precipitation in the 2080s as compared to the mean values of the base period. The annual mean precipitation would increase by about 15.29% under scenario A2 and increase by about 5.33% under scenario B2 in the 2080s. The winter and autumn might be the more distinct seasons with more predicted changes of precipitation than in other seasons. And (3) there would be distinctive spatial distribution differences for the change of annual mean precipitation in the river basin, but the most of Yangtze River basin would be dominated by the increasing trend.  相似文献   

10.
Precipitation temporal and spatial variability often controls terrestrial hydrological processes and states. Common remote-sensing and modeling precipitation products have a spatial resolution that is often too coarse to reveal hydrologically important spatial variability. A statistical algorithm was developed for downscaling low-resolution spatial precipitation fields. This algorithm auto-searches precipitation spatial structures (rain-pixel clusters), and orographic effects on precipitation distribution without prior knowledge of atmospheric setting. It is composed of three components: rain-pixel clustering, multivariate regression, and random cascade. The only required input data for the downscaling algorithm are coarse-pixel precipitation map and a topographic map. The algorithm was demonstrated with 4 km × 4 km Next Generation Radar (NEXRAD) precipitation fields, and tested by downscaling NEXRAD-aggregated 16 km × 16 km precipitation fields to 4 km × 4 km pixel precipitation, which was then compared to the original NEXRAD data. The demonstration and testing were performed at both daily and hourly temporal resolutions for the northern New Mexico mountainous terrain and the central Texas Hill Country. The algorithm downscaled daily precipitation fields are in good agreement with the original 4 km × 4 km NEXRAD precipitation, as measured by precipitation spatial structures and the statistics between the downscaling and the original NEXRAD precipitation maps. For three daily precipitation events, downscaled precipitation map reproduces precipitation variance of the disaggregation field, and with Pearson correlation coefficients between the downscaled map and the NEXRAD map of 0.65, 0.71, and 0.80. The algorithm does not perform as well on downscaling hourly precipitation fields at the examined scale range (from 16 km to 4 km), which underestimates precipitation variance of the disaggregation field. For a scale range from 4 km to 1 km, the algorithm has potential to perform well at both daily and hourly precipitation fields, indicated from good regression performance.  相似文献   

11.
In this study, we used the statistical downscaling model (SDSM) to estimate mean and extreme precipitation indices under present and future climate conditions for Shikoku, Japan. Specifically, we considered the following mean and extreme precipitation indices: mean daily precipitation, R10 (number of days with precipitation >10 mm/day), R5d (annual maximum precipitation accumulated over 5 days), maximum dry-spell length (MaDSL), and maximum wet-spell length (MaWSL). Initially, we calibrated the SDSM model using the National Center for environmental prediction (NCEP) reanalysis dataset and daily time series of precipitation for ten locations in Shikoku which were acquired from the surface weather observation point dataset. Subsequently, we used the validated SDSM, using data from NCEP and outputs form general circulation models (GCM), to predict future precipitation indices. Specifically, the HadCM3 GCM was run under the special report on emissions scenarios (SRES) A2 and B2 scenarios, and the CGCM3 GCM was run under the SRES A2 and A1B scenarios. The results showed that: (1) the SDSM can reasonably be used to simulate mean and extreme precipitation indices in the Shikoku region; (2) the values of annual R10 were predicated to decrease in the future in northern Shikoku under all climate scenarios; conversely, the values of annual R10 were predicted to increase in the future in the range of 0–15 % in southern and western Shikoku. The values of annual MaDSL were predicted to increase in northern Shikoku, and the values of annual MaWSL were predicted to decrease in northeastern Shikoku; (3) the spatial variation of precipitation indices indicated the potential for an increased occurrence of drought across northeastern Shikoku and an increased occurrence of flood events in the southwestern part of Shikoku, especially under the A2 and A1B scenarios; (4) characteristics of future precipitation may differ between the northern and southern sides of the Shikoku Mountains. Regional variations in extreme precipitation indices were not notably evident in the B2 scenario compared to the other scenarios.  相似文献   

12.
Climate change would significantly affect many hydrologic systems, which in turn would affect the water availability, runoff, and the flow in rivers. This study evaluates the impacts of possible future climate change scenarios on the hydrology of the catchment area of the Tunga–Bhadra River, upstream of the Tungabhadra dam. The Hydrologic Engineering Center's Hydrologic Modeling System version 3.4 (HEC‐HMS 3.4) is used for the hydrological modelling of the study area. Linear‐regression‐based Statistical DownScaling Model version 4.2 (SDSM 4.2) is used to downscale the daily maximum and minimum temperature, and daily precipitation in the four sub‐basins of the study area. The large‐scale climate variables for the A2 and B2 scenarios obtained from the Hadley Centre Coupled Model version 3 are used. After model calibration and testing of the downscaling procedure, the hydrological model is run for the three future periods: 2011–2040, 2041–2070, and 2071–2099. The impacts of climate change on the basin hydrology are assessed by comparing the present and future streamflow and the evapotranspiration estimates. Results of the water balance study suggest increasing precipitation and runoff and decreasing actual evapotranspiration losses over the sub‐basins in the study area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
利用降尺度方法对CMIP5全球气候模式进行空间降尺度并以此研究鄱阳湖流域未来气候时空变化趋势,能够为流域生态环境保护提供数据、技术和理论上的支持.通过简化原始网络结构,在网络首部添加插值层,采用反卷积算法作为上采样算法对传统U-Net网络进行改进,建立基于深度学习的气候模式空间降尺度模型(DLDM).以1965-200...  相似文献   

14.
This paper examines the impacts of climate change on future water yield with associated uncertainties in a mountainous catchment in Australia using a multi‐model approach based on four global climate models (GCMs), 200 realisations (50 realisations from each GCM) of downscaled rainfalls, 2 hydrological models and 6 sets of model parameters. The ensemble projections by the GCMs showed that the mean annual rainfall is likely to reduce in the future decades by 2–5% in comparison with the current climate (1987–2012). The results of ensemble runoff projections indicated that the mean annual runoff would reduce in future decades by 35%. However, considerable uncertainty in the runoff estimates was found as the ensemble results project changes of the 5th (dry scenario) and 95th (wet scenario) percentiles by ?73% to +27%, ?73% to +12%, ?77% to +21% and ?80% to +24% in the decades of 2021–2030, 2031–2040, 2061–2070 and 2071–2080, respectively. Results of uncertainty estimation demonstrated that the choice of GCMs dominates overall uncertainty. Realisation uncertainty (arising from repetitive simulations for a given time step during downscaling of the GCM data to catchment scale) of the downscaled rainfall data was also found to be remarkably high. Uncertainty linked to the choice of hydrological models was found to be quite small in comparison with the GCM and realisation uncertainty. The hydrological model parameter uncertainty was found to be lowest among the sources of uncertainties considered in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This study draws attention on the extreme precipitation changes over the eastern Himalayan region of the Teesta river catchment. To explore the precipitation variability and heterogeneity, observed (1979–2005) and statistically downscaled (2006–2100) Coupled Model Intercomparison Project Phase Five earth system model global circulation model daily precipitation datasets are used. The trend analysis is performed to analyze the long-term changes in precipitation scenarios utilizing non-parametric Mann–Kendall (MK) test, Kendall Tau test, and Sen’s slope estimation. A quantile regression (QR) method has been applied to assess the lower and upper tails changes in precipitation scenarios. Precipitation extreme indices were generated to quantify the extremity of precipitation in observed and projected time domains. To portrait the spatial heterogeneity, the standard deviation and skewness are computed for precipitation extreme indices. The results show that the overall precipitation amount will be increased in the future over the Himalayan region. The monthly time series trend analysis based results reflect an interannual variability in precipitation. The QR analysis results showed significant increments in precipitation amount in the upper and lower quantiles. The extreme precipitation events are increased during October to June months; whereas, it decreases from July to September months. The representative concentration pathway (RCP) 8.5 based experiments showed extreme changes in precipitation compared to RCP2.6 and RCP4.5. The precipitation extreme indices results reveal that the intensity of precipitation events will be enhanced in future time. The spatial standard deviation and skewness based observations showed a significant variability in precipitation over the selected Himalayan catchment.  相似文献   

16.
Five downscaling techniques, namely the statistical downscaling model, the automated statistical downscaling method, the change factor (CF) method, the advanced CF method, the Weather generator (LarsWG5) method, are applied to the upstream basin of the Huaihe River. Changes in regional climate scenarios and hydrology variables are compared in future periods to investigate the uncertainty associated with the downscaling techniques. Paired-sample T test is applied to evaluation the significant of the difference of the means between the observed data and the downscaled data in the future. The Xinanjiang rainfall–runoff model is employed to simulate the rainfall–runoff relation. The results demonstrate that the downscaling techniques utilized herein predict an increased tendency in the future. The increases range of maximum temperature (Tmax) is between 3.7 and 4.7 °C until the time period of 2070–2099 (2080s). While, the increases range of minimum temperature (Tmin) is between 2.8 and 4.9 °C until 2080s. The research presented herein determined that there is an increase predicted for the peaks over threshold (discussed in the paper) and a decrease predicted for the peaks below the threshold (discussed in the paper) in the future, which illustrates that the temperature would rise gradually in the future. Precipitation changes are not as obvious as temperatures changes and tend to be influence by the season. Most downscaling techniques predict increases, and others indict decreases. The annual mean precipitation range changes between 3.2 and 53.3 %, and moreover, these changes vary from season to season.  相似文献   

17.
The input uncertainty is as significant as model error, which affects the parameter estimation, yields bias and misleading results. This study performed a comprehensive comparison and evaluation of uncertainty estimates according to the impact of precipitation errors by GLUE and Bayesian methods using the Metropolis Hasting algorithm in a validated conceptual hydrological model (WASMOD). It aims to explain the sensitivity and differences between the GLUE and Bayesian method applied to hydrological model under precipitation errors with constant multiplier parameter and random multiplier parameter. The 95 % confidence interval of monthly discharge in low flow, medium flow and high flow were selected for comparison. Four indices, i.e. the average relative interval length, the percentage of observations bracketed by the confidence interval, the percentage of observations bracketed by the unit confidence interval and the continuous rank probability score (CRPS) were used in this study for sensitivity analysis under model input error via GLUE and Bayesian methods. It was found that (1) the posterior distributions derived by the Bayesian method are narrower and sharper than those obtained by the GLUE under precipitation errors, but the differences are quite small; (2) Bayesian method performs more sensitive in uncertainty estimates of discharge than GLUE according to the impact of precipitation errors; (3) GLUE and Bayesian methods are more sensitive in uncertainty estimate of high flow than the other flows by the impact of precipitation errors; and (4) under the impact of precipitation, the results of CRPS for low and medium flows are quite stable from both GLUE and Bayesian method while it is sensitive for high flow by Bayesian method.  相似文献   

18.
Precipitation and Reference Evapotranspiration (ETo) are the most important variables for rainfall–runoff modelling. However, it is not always possible to get access to them from ground‐based measurements, particularly in ungauged catchments. This study explores the performance of rainfall and ETo data from the global European Centre for Medium Range Weather Forecasts (ECMWF) ERA interim reanalysis data for the discharge prediction. The Weather Research and Forecasting (WRF) mesoscale model coupled with the NOAH Land Surface Model is used for the retrieval of hydro‐meteorological variables by downscaling ECMWF datasets. The conceptual Probability Distribution Model (PDM) is chosen for this study for the discharge prediction. The input data and model parameter sensitivity analysis and uncertainty estimations are taken into account for the PDM calibration and prediction in the case study catchment in England following the Generalized Likelihood Uncertainty Estimation approach. The goodness of calibration and prediction uncertainty is judged on the basis of the p‐factor (observations bracketed by the prediction uncertainty) and the r‐factor (achievement of small uncertainty band). The overall analysis suggests that the uncertainty estimates using WRF downscaled ETo have slightly smaller p and r values (p= 0.65; r= 0.58) as compared to ground‐based observation datasets (p= 0.71; r= 0.65) during the validation and hence promising for discharge prediction. On the contrary, WRF precipitation has the worst performance, and further research is needed for its improvement (p= 0.04; r= 0.10). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
20.
《水文研究》2017,31(1):35-50
A methodology based on long‐term dynamical downscaling to analyse climate change effects on watershed‐scale precipitation during a historical period is proposed in this study. The reliability and applicability of the methodology were investigated based on the long‐term dynamical downscaling results. For an application of the proposed methodology, two study watersheds in Northern California were selected: the Upper Feather River watershed and the Yuba River watershed. Then, precipitation was reconstructed at 3‐km spatial resolution and hourly intervals over the study watersheds for 141 water years from 1 October 1871 to 30 September 2012 by dynamically downscaling a long‐term atmospheric reanalysis dataset, 20th century global reanalysis version 2 by means of a regional climate model. The reconstructed precipitation was compared against observed precipitation, in order to assess the applicability of the proposed methodology for the reconstruction of watershed‐scale precipitation and to validate this methodology. The validation shows that the reconstructed precipitation is in good agreement with observation data. Moreover, the differences between the reconstructed precipitation and the corresponding observations do not significantly change through the historical period. After the validation, climate change analysis was conducted based on the reconstructed precipitation. Through this analysis, it was found that basin‐average precipitation has increased significantly over both of the study watersheds during the historical period. An upward trend in monthly basin‐average precipitation is not significant in wet months except February while it is significant in dry months of the year. Furthermore, peak values of basin‐average precipitation are also on an upward trend over the study watersheds. The upward trend in peak basin‐average precipitation is more significant during a shorter duration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号