首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many downscaling techniques have been developed in the past few years for projection of station‐scale hydrological variables from large‐scale atmospheric variables simulated by general circulation models (GCMs) to assess the hydrological impacts of climate change. This article compares the performances of three downscaling methods, viz. conditional random field (CRF), K‐nearest neighbour (KNN) and support vector machine (SVM) methods in downscaling precipitation in the Punjab region of India, belonging to the monsoon regime. The CRF model is a recently developed method for downscaling hydrological variables in a probabilistic framework, while the SVM model is a popular machine learning tool useful in terms of its ability to generalize and capture nonlinear relationships between predictors and predictand. The KNN model is an analogue‐type method that queries days similar to a given feature vector from the training data and classifies future days by random sampling from a weighted set of K closest training examples. The models are applied for downscaling monsoon (June to September) daily precipitation at six locations in Punjab. Model performances with respect to reproduction of various statistics such as dry and wet spell length distributions, daily rainfall distribution, and intersite correlations are examined. It is found that the CRF and KNN models perform slightly better than the SVM model in reproducing most daily rainfall statistics. These models are then used to project future precipitation at the six locations. Output from the Canadian global climate model (CGCM3) GCM for three scenarios, viz. A1B, A2, and B1 is used for projection of future precipitation. The projections show a change in probability density functions of daily rainfall amount and changes in the wet and dry spell distributions of daily precipitation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
We applied a simple statistical downscaling procedure for transforming daily global climate model (GCM) rainfall to the scale of an agricultural experimental station in Katumani, Kenya. The transformation made was two-fold. First, we corrected the rainfall frequency bias of the climate model by truncating its daily rainfall cumulative distribution into the station’s distribution based on a prescribed observed wet-day threshold. Then, we corrected the climate model rainfall intensity bias by mapping its truncated rainfall distribution into the station’s truncated distribution. Further improvements were made to the bias corrected GCM rainfall by linking it with a stochastic disaggregation scheme to correct the time structure problem inherent with daily GCM rainfall. Results of the simple and hybridized GCM downscaled precipitation variables (total, probability of occurrence, intensity and dry spell length) were linked with a crop model for a more objective evaluation of their performance using a non-linear measure based on mutual information based on entropy. This study is useful for the identification of both suitable downscaling technique as well as the effective precipitation variables for forecasting crop yields using GCM’s outputs which can be useful for addressing food security problems beforehand in critical basins around the world.  相似文献   

3.
The Climate impact studies in hydrology often rely on climate change information at fine spatial resolution. However, general circulation models (GCMs), which are among the most advanced tools for estimating future climate change scenarios, operate on a coarse scale. Therefore the output from a GCM has to be downscaled to obtain the information relevant to hydrologic studies. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling of precipitation at monthly time scale. The effectiveness of this approach is illustrated through its application to meteorological sub-divisions (MSDs) in India. First, climate variables affecting spatio-temporal variation of precipitation at each MSD in India are identified. Following this, the data pertaining to the identified climate variables (predictors) at each MSD are classified using cluster analysis to form two groups, representing wet and dry seasons. For each MSD, SVM- based downscaling model (DM) is developed for season(s) with significant rainfall using principal components extracted from the predictors as input and the contemporaneous precipitation observed at the MSD as an output. The proposed DM is shown to be superior to conventional downscaling using multi-layer back-propagation artificial neural networks. Subsequently, the SVM-based DM is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to obtain future projections of precipitation for the MSDs. The results are then analyzed to assess the impact of climate change on precipitation over India. It is shown that SVMs provide a promising alternative to conventional artificial neural networks for statistical downscaling, and are suitable for conducting climate impact studies.  相似文献   

4.
The traditional dynamical downscaling (TDD) method employs continuous integration of regional climate models (RCM) with the general circulation model (GCM) providing the initial and lateral boundary conditions. Dynamical downscaling simulations are constrained by physical principles and can generate a full set of climate information, providing one of the important approaches to projecting fine spatial-scale future climate information. However, the systematic biases of climate models often degrade the TDD simulations and hinder the application of dynamical downscaling in the climate-change related studies. New methods developed over past decades improve the performance of dynamical downscaling simulations. These methods can be divided into four groups: the TDD method, the pseudo global warming method, dynamical downscaling with GCM bias corrections, and dynamical downscaling with both GCM and RCM bias corrections. These dynamical downscaling methods are reviewed and compared in this paper. The merits and limitations of each dynamical downscaling method are also discussed. In addition, the challenges and potential directions in progressing dynamical downscaling methods are stated.  相似文献   

5.
In this study, we investigate the impact of the spatial variability of daily precipitation on hydrological projections based on a comparative assessment of streamflow simulations driven by a global climate model (GCM) and two regional climate models (RCMs). A total of 12 different climate input datasets, that is, the raw and bias‐corrected GCM and raw and bias‐corrected two RCMs for the reference and future periods, are fed to a semidistributed hydrological model to assess whether the bias correction using quantile mapping and dynamical downscaling using RCMs can improve streamflow simulation in the Han River basin, Korea. A statistical analysis of the daily precipitation demonstrates that the precipitation simulated by the GCM fails to capture the large variability of the observed daily precipitation, in which the spatial autocorrelation decreases sharply within a relatively short distance. However, the spatial variability of precipitation simulated by the two RCMs shows better agreement with the observations. After applying bias correction to the raw GCM and raw RCMs outputs, only a slight change is observed in the spatial variability, whereas an improvement is observed in the precipitation intensity. Intensified precipitation but with the same spatial variability of the raw output from the bias‐corrected GCM does not improve the heterogeneous runoff distributions, which in turn regulate unrealistically high peak downstream streamflow. GCM‐simulated precipitation with a large bias correction that is necessary to compensate for the poor performance in present climate simulation appears to distort streamflow patterns in the future projection, which leads to misleading projections of climate change impacts on hydrological extremes.  相似文献   

6.
Skilful and reliable precipitation data are essential for seasonal hydrologic forecasting and generation of hydrological data. Although output from dynamic downscaling methods is used for hydrological application, the existence of systematic errors in dynamically downscaled data adversely affects the skill of hydrologic forecasting. This study evaluates the precipitation data derived by dynamically downscaling the global atmospheric reanalysis data by propagating them through three hydrological models. Hydrological models are calibrated for 28 watersheds located across the southeastern United States that is minimally affected by human intervention. Calibrated hydrological models are forced with five different types of datasets: global atmospheric reanalysis (National Centers for Environmental Prediction/Department of Energy Global Reanalysis and European Centre for Medium‐Range Weather Forecasts 40‐year Reanalysis) at their native resolution; dynamically downscaled global atmospheric reanalysis at 10‐km grid resolution; stochastically generated data from weather generator; bias‐corrected dynamically downscaled; and bias‐corrected global reanalysis. The reanalysis products are considered as surrogates for large‐scale observations. Our study indicates that over the 28 watersheds in the southeastern United States, the simulated hydrological response to the bias‐corrected dynamically downscaled data is superior to the other four meteorological datasets. In comparison with synthetically generated meteorological forcing (from weather generator), the dynamically downscaled data from global atmospheric reanalysis result in more realistic hydrological simulations. Therefore, we conclude that dynamical downscaling of global reanalysis, which offers data for sufficient number of years (in this case 22 years), although resource intensive, is relatively more useful than other sources of meteorological data with comparable period in simulating realistic hydrological response at watershed scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The question of which climate model bias correction methods and spatial scales for correction are optimal for both projecting future hydrological changes as well as removing initial model bias has so far received little attention. For 11 climate models (CMs), or GCM/RCM – Global/Regional Climate Model pairing, this paper analyses the relationship between complexity and robustness of three distribution‐based scaling (DBS) bias correction methods applied to daily precipitation at various spatial scales. Hydrological simulations are forced by CM inputs to assess the spatial uncertainty of groundwater head and stream discharge given the various DBS methods. A unique metric is devised, which allows for comparison of spatial variability in climate model bias and projected change in precipitation. It is found that the spatial variability in climate model bias is larger than in the climate change signals. The magnitude of spatial bias seen in precipitation inputs does not necessarily correspond to the magnitude of biases seen in hydrological outputs. Variables that integrate basin responses over time and space are more sensitive to mean spatial biases and less so on extremes. Hydrological simulations forced by the least parameterized DBS approach show the highest error in mean and maximum groundwater heads; however, the most highly parameterised DBS approach shows less robustness in future periods compared with the reference period it was trained in. For hydrological impacts studies, choice of bias correction method should depend on the spatial scale at which hydrological impacts variables are required and whether CM initial bias is spatially uniform or spatially varying. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
D. Raje  P. Priya  R. Krishnan 《水文研究》2014,28(4):1874-1889
In climate‐change studies, a macroscale hydrologic model (MHM) operating over large scales can be an important tool in developing consistent hydrological variability estimates over large basins. MHMs, which can operate at coarse grid resolutions of about 1° latitude by longitude, have been used previously to study climate change impacts on the hydrology of continental scale or global river basins. They can provide a connection between global atmospheric models and water resource systems on large spatial scales and long timescales. In this study, the variable infiltration capacity (VIC) MHM is used to study large scale hydrologic impacts of climate change for Indian river basins. Large‐scale changes in runoff, evapotranspiration and soil moisture for India, as well as station‐scale changes in discharges for three major river basins with distinct climatic and geographic characteristics are examined in this study. Climate model projections for meteorological variables (precipitation, temperature and wind speed) from three general circulation models (GCMs) and three emissions scenarios are used to drive the VIC MHM. GCM projections are first interpolated to a 1° by 1° hydrologic model grid and then bias‐corrected using a quantile–quantile mapping. The VIC model is able to reproduce observed statistics for discharges in the Ganga, Narmada and Krishna basins reasonably well, even at the coarse grid resolution employed using a calibration period for years 1965–1970 and testing period from 1971–1973/1974. An increasing trend is projected for summer monsoon surface runoff, evapotranspiration and soil moisture in most central Indian river basins, whereas a decrease in runoff and soil moisture is projected for some regions in southern India, with important differences arising from GCM and scenario variability. Discharge statistics show increases in mid‐flow and low flow at Farakka station on Ganga River, increased high flows at Jamtara station upstream of Narmada, and increased high, mid‐flow and low flow for Vijayawada station on Krishna River in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Three downscaling models, namely the Statistical Down‐Scaling Model (SDSM), the Long Ashton Research Station Weather Generator (LARS‐WG) model and an artificial neural network (ANN) model, have been compared in terms of various uncertainty attributes exhibited in their downscaled results of daily precipitation, daily maximum and minimum temperature. The uncertainty attributes are described by the model errors and the 95% confidence intervals in the estimates of means and variances of downscaled data. The significance of those errors has been examined by suitable statistical tests at the 95% confidence level. The 95% confidence intervals in the estimates of means and variances of downscaled data have been estimated using the bootstrapping method and compared with the observed data. The study has been carried out using 40 years of observed and downscaled daily precipitation data and daily maximum and minimum temperature data, starting from 1961 to 2000. In all the downscaling experiments, the simulated predictors of the Canadian Global Climate Model (CGCM1) have been used. The uncertainty assessment results indicate that, in daily precipitation downscaling, the LARS‐WG model errors are significant at the 95% confidence level only in a very few months, the SDSM errors are significant in some months, and the ANN model errors are significant in almost all months of the year. In downscaling daily maximum and minimum temperature, the performance of all three models is similar in terms of model errors evaluation at the 95% confidence level. But, according to the evaluation of variability and uncertainty in the estimates of means and variances of downscaled precipitation and temperature, the performances of the LARS‐WG model and the SDSM are almost similar, whereas the ANN model performance is found to be poor in that consideration. Further assessment of those models, in terms of skewness and average dry‐spell length comparison between observed and downscaled daily precipitation, indicates that the downscaled daily precipitation skewness and average dry‐spell lengths of the LARS‐WG model and the SDSM are closer to the observed data, whereas the ANN model downscaled precipitation underestimated those statistics in all months. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
《水文研究》2017,31(1):35-50
A methodology based on long‐term dynamical downscaling to analyse climate change effects on watershed‐scale precipitation during a historical period is proposed in this study. The reliability and applicability of the methodology were investigated based on the long‐term dynamical downscaling results. For an application of the proposed methodology, two study watersheds in Northern California were selected: the Upper Feather River watershed and the Yuba River watershed. Then, precipitation was reconstructed at 3‐km spatial resolution and hourly intervals over the study watersheds for 141 water years from 1 October 1871 to 30 September 2012 by dynamically downscaling a long‐term atmospheric reanalysis dataset, 20th century global reanalysis version 2 by means of a regional climate model. The reconstructed precipitation was compared against observed precipitation, in order to assess the applicability of the proposed methodology for the reconstruction of watershed‐scale precipitation and to validate this methodology. The validation shows that the reconstructed precipitation is in good agreement with observation data. Moreover, the differences between the reconstructed precipitation and the corresponding observations do not significantly change through the historical period. After the validation, climate change analysis was conducted based on the reconstructed precipitation. Through this analysis, it was found that basin‐average precipitation has increased significantly over both of the study watersheds during the historical period. An upward trend in monthly basin‐average precipitation is not significant in wet months except February while it is significant in dry months of the year. Furthermore, peak values of basin‐average precipitation are also on an upward trend over the study watersheds. The upward trend in peak basin‐average precipitation is more significant during a shorter duration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A statistical downscaling model, based on the outputs of general circulation models (GCMs) as predictors, was proposed to simulate the daily precipitations in the Shih‐Men reservoir catchment in Taiwan. The structure of the proposed downscaling model is composed of two parts: classification and regression. Predictors of classification and regression models were selected from the large‐scale weather variables in the National Centers for Environmental Prediction (NECP) reanalysis data based on statistical tests. Discriminant analysis and support vector regression (SVR) were applied to build the classification and regression models. The outputs of five atmosphere‐ocean GCMs, which are reported to have properly considered tropical cyclone information and East Asian Monsoon modelling, were used for projecting future precipitations. Data from four grids covering Taiwan were used for developing the downscaling model. The potential of the downscaling models in simulating local precipitations was evaluated, and downscaling results reveal that the proposed downscaling model can reproduce local daily precipitations from large‐scale weather variables. Projected local precipitations under two emission scenarios show that the precipitations in the study area tend to decrease. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Future climate projections of Global Climate Models (GCMs) under different emission scenarios are usually used for developing climate change mitigation and adaptation strategies. However, the existing GCMs have only limited ability to simulate the complex and local climate features, such as precipitation. Furthermore, the outputs provided by GCMs are too coarse to be useful in hydrologic impact assessment models, as these models require information at much finer scales. Therefore, downscaling of GCM outputs is usually employed to provide fine-resolution information required for impact models. Among the downscaling techniques based on statistical principles, multiple regression and weather generator are considered to be more popular, as they are computationally less demanding than the other downscaling techniques. In the present study, the performances of a multiple regression model (called SDSM) and a weather generator (called LARS-WG) are evaluated in terms of their ability to simulate the frequency of extreme precipitation events of current climate and downscaling of future extreme events. Areal average daily precipitation data of the Clutha watershed located in South Island, New Zealand, are used as baseline data in the analysis. Precipitation frequency analysis is performed by fitting the Generalized Extreme Value (GEV) distribution to the observed, the SDSM simulated/downscaled, and the LARS-WG simulated/downscaled annual maximum (AM) series. The computations are performed for five return periods: 10-, 20-, 40-, 50- and 100-year. The present results illustrate that both models have similar and good ability to simulate the extreme precipitation events and, thus, can be adopted with confidence for climate change impact studies of this nature.  相似文献   

13.
Bias correction methods are usually applied to climate model outputs before using these outputs for hydrological climate change impact studies. However, the use of a bias correction procedure is debatable, due to the lack of physical basis and the bias nonstationarity of climate model outputs between future and historical periods. The direct use of climate model outputs for impact studies has therefore been recommended in a few studies. This study investigates the possibility of using reanalysis‐driven regional climate model (RCM) outputs directly for hydrological modelling by comparing the performance of bias‐corrected and nonbias‐corrected climate simulations in hydrological simulations over 246 watersheds in the Province of Québec, Canada. When using RCM outputs directly, the hydrological model is specifically calibrated using RCM simulations. Two evaluation metrics (Nash–Sutcliffe efficiency [NSE] and transformed root mean square error [TRMSE]) and three hydrological indicators (mean, high, and low flows) are used as criteria for this comparison. Two reanalysis‐driven RCMs with resolutions of 45 km and 15 km are used to investigate the scale effect of climate model simulations and bias correction approaches on hydrology modelling. The results show that nonbias‐corrected simulations perform better than bias‐corrected simulations for the reproduction of the observed streamflows when using NSE and TRMSE as criteria. The nonbias‐corrected simulations are also better than or comparable with the bias‐corrected simulations in terms of reproducing the three hydrological indicators. These results imply that the raw RCM outputs driven by reanalysis can be used directly for hydrological modelling with a specific calibration of hydrological models using these datasets when gauged observations are scarce or unavailable. The nonbias‐corrected simulations (at a minimum) should be provided to end users, along with the bias‐corrected ones, especially for studying the uncertainty of hydrological climate change impacts. This is especially true when using an RCM with a high resolution, since the scale effect is observed when the RCM resolution increases from a 45‐km to a 15‐km scale.  相似文献   

14.
A statistical framework based on nonlinear dynamics theory and recurrence quantification analysis of dynamical systems is proposed to quantitatively identify the temporal characteristics of extreme (maximum) daily precipitation series. The methodology focuses on both observed and general circulation model (GCM) generated climates for present (1961–2000) and future (2061–2100) periods which correspond to 1xCO2 and 2xCO2 simulations. The daily precipitation has been modelled as a stochastic process coupled with atmospheric circulation. An automated and objective classification of daily circulation patterns (CPs) based on optimized fuzzy rules was used to classify both observed CPs and ECHAM4 GCM‐generated CPs for 1xCO2 and 2xCO2 climate simulations (scenarios). The coupled model ‘CP‐precipitation’ was suitable for precipitation downscaling. The overall methodology was applied to the medium‐sized mountainous Mesochora catchment in Central‐Western Greece. Results reveal substantial differences between the observed maximum daily precipitation statistical patterns and those produced by the two climate scenarios. A variable nonlinear deterministic behaviour characterizes all climate scenarios examined. Transitions’ patterns differ in terms of duration and intensity. The 2xCO2 scenario contains the strongest transitions highlighting an unusual shift between floods and droughts. The implications of the results to the predictability of the phenomenon are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

The regional hydroclimatological effect of global climate change has been estimated and compared using a semi-empirical downscaling method with two versions (T21 and T42) of the general circulation model (GCM) developed at the Max Planck Institute for Meteorology, Germany. The comparisons were performed with daily mean temperature and daily precipitation amounts for the continental climate of the state of Nebraska, USA. Both the T21 and the T42 versions resulted in an increase of daily mean temperature under a 2 x C02 climatess. The magnitude of warming was substantially greater for T21 than for T42, except for February and June and at some stations in July where the T42 model suggested greater warming. Both GCMs resulted in a slight decrease in precipitation frequency and an increase in the amount of precipitation on wet days. Here, the T42 model again led to smaller changes. Different locations within Nebraska exhibited somewhat different temperature and precipitation responses with both GCM versions.  相似文献   

16.
Precipitation and temperature time series suffer from many problems, such as short time, inadequate spatial coverage, missing data, and biases from various causes, which are particularly critical in remote areas such as Northern Canada. The development of alternative datasets for using as proxies for inadequate/missing weather data represents a key research area. In this paper, the performance of 6 alternative datasets is evaluated for hydrological modelling over 12 watersheds located across Canada and the contiguous United States. The datasets can be classified into 3 distinct categories: (a) interpolated gridded data, (b) reanalysis data, and (c) climate model outputs. Hydrological simulations were carried out using a lumped conceptual hydrological model calibrated using standard weather data and compared against results using a calibration specific to each alternative dataset. Prior to the hydrological simulations, the alternative datasets were all evaluated with respect to their ability to reproduce gridded daily precipitation and temperature characteristics over North America. The results show that both the reanalysis data and climate model data adequately represent the spatial pattern of daily precipitation and temperature over North America. The North American Regional Reanalysis (NARR) dataset consistently shows the best performance. With respect to hydrological modelling, the observed discharges are accurately represented by both the gridded and NARR datasets, and more so for the NARR data. The National Centers for Environmental Prediction dataset consistently performs worst as it is unable to even capture the seasonal pattern of observed streamflow for 3 out of the 12 watersheds. These results indicate that the NARR dataset could be used as a proxy for gauged precipitation and temperature for hydrological modelling over watersheds where observational datasets are deficient. The results also illustrate the ability of climate model data to be used for performing hydrological modelling when driven by reanalysis data at their boundaries, and especially so for high‐resolution models.  相似文献   

17.
In this study, the applicability of the statistical downscaling model (SDSM) in downscaling precipitation in the Yangtze River basin, China was investigated. The investigation includes the calibration of the SDSM model by using large-scale atmospheric variables encompassing NCEP/NCAR reanalysis data, the validation of the model using independent period of the NCEP/NCAR reanalysis data and the general circulation model (GCM) outputs of scenarios A2 and B2 of the HadCM3 model, and the prediction of the future regional precipitation scenarios. Selected as climate variables for downscaling were measured daily precipitation data (1961–2000) from 136 weather stations in the Yangtze River basin. The results showed that: (1) there existed good relationship between the observed and simulated precipitation during the calibration period of 1961–1990 as well as the validation period of 1991–2000. And the results of simulated monthly and seasonal precipitation were better than that of daily. The average R 2 values between the simulated and observed monthly and seasonal precipitation for the validation period were 0.78 and 0.91 respectively for the whole basin, which showed that the SDSM had a good applicability on simulating precipitation in the Yangtze River basin. (2) Under both scenarios A2 and B2, during the prediction period of 2010–2099, the change of annual mean precipitation in the Yangtze River basin would present a trend of deficit precipitation in 2020s; insignificant changes in the 2050s; and a surplus of precipitation in the 2080s as compared to the mean values of the base period. The annual mean precipitation would increase by about 15.29% under scenario A2 and increase by about 5.33% under scenario B2 in the 2080s. The winter and autumn might be the more distinct seasons with more predicted changes of precipitation than in other seasons. And (3) there would be distinctive spatial distribution differences for the change of annual mean precipitation in the river basin, but the most of Yangtze River basin would be dominated by the increasing trend.  相似文献   

18.
General circulation models (GCMs), the climate models often used in assessing the impact of climate change, operate on a coarse scale and thus the simulation results obtained from GCMs are not particularly useful in a comparatively smaller river basin scale hydrology. The article presents a methodology of statistical downscaling based on sparse Bayesian learning and Relevance Vector Machine (RVM) to model streamflow at river basin scale for monsoon period (June, July, August, September) using GCM simulated climatic variables. NCEP/NCAR reanalysis data have been used for training the model to establish a statistical relationship between streamflow and climatic variables. The relationship thus obtained is used to project the future streamflow from GCM simulations. The statistical methodology involves principal component analysis, fuzzy clustering and RVM. Different kernel functions are used for comparison purpose. The model is applied to Mahanadi river basin in India. The results obtained using RVM are compared with those of state-of-the-art Support Vector Machine (SVM) to present the advantages of RVMs over SVMs. A decreasing trend is observed for monsoon streamflow of Mahanadi due to high surface warming in future, with the CCSR/NIES GCM and B2 scenario.  相似文献   

19.
Abstract

To investigate the consequences of climate change on the water budget in small catchments, it is necessary to know the change of local precipitation and temperature. General Circulation Models (GCM) cannot provide regional climate parameters yet, because of their coarse resolution and imprecise modelling of precipitation. Therefore downscaling of precipitation and temperature has to be carried out from the GCM grids to a small scale of a few square kilometres. Daily rainfall and temperature are modelled as processes conditioned on atmospheric circulation. Rainfall is linked to the circulation patterns (CPs) using conditional probabilities and conditional rainfall amount distribution. Both temperature and precipitation are downscaled to several locations simultaneously taking into account the CP dependent spatial correlation. Temperature is modelled using a simple autoregressive approach, conditioned on atmospheric circulation and local areal precipitation. The model uses the classification scheme of the German Weather Service and a fuzzy rule-based classification. It was applied in the Aller catchment for validation using observed rainfall and temperature, and observed classified geopotential pressure heights. GCM scenarios of the ECHAM model were used to make climate change predictions (using classified GCM geopotential heights); simulated values agree fairly well with historical data. Results for different GCM scenarios are shown.  相似文献   

20.
In this study, we used the statistical downscaling model (SDSM) to estimate mean and extreme precipitation indices under present and future climate conditions for Shikoku, Japan. Specifically, we considered the following mean and extreme precipitation indices: mean daily precipitation, R10 (number of days with precipitation >10 mm/day), R5d (annual maximum precipitation accumulated over 5 days), maximum dry-spell length (MaDSL), and maximum wet-spell length (MaWSL). Initially, we calibrated the SDSM model using the National Center for environmental prediction (NCEP) reanalysis dataset and daily time series of precipitation for ten locations in Shikoku which were acquired from the surface weather observation point dataset. Subsequently, we used the validated SDSM, using data from NCEP and outputs form general circulation models (GCM), to predict future precipitation indices. Specifically, the HadCM3 GCM was run under the special report on emissions scenarios (SRES) A2 and B2 scenarios, and the CGCM3 GCM was run under the SRES A2 and A1B scenarios. The results showed that: (1) the SDSM can reasonably be used to simulate mean and extreme precipitation indices in the Shikoku region; (2) the values of annual R10 were predicated to decrease in the future in northern Shikoku under all climate scenarios; conversely, the values of annual R10 were predicted to increase in the future in the range of 0–15 % in southern and western Shikoku. The values of annual MaDSL were predicted to increase in northern Shikoku, and the values of annual MaWSL were predicted to decrease in northeastern Shikoku; (3) the spatial variation of precipitation indices indicated the potential for an increased occurrence of drought across northeastern Shikoku and an increased occurrence of flood events in the southwestern part of Shikoku, especially under the A2 and A1B scenarios; (4) characteristics of future precipitation may differ between the northern and southern sides of the Shikoku Mountains. Regional variations in extreme precipitation indices were not notably evident in the B2 scenario compared to the other scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号