首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Future climate projections of Global Climate Models (GCMs) under different emission scenarios are usually used for developing climate change mitigation and adaptation strategies. However, the existing GCMs have only limited ability to simulate the complex and local climate features, such as precipitation. Furthermore, the outputs provided by GCMs are too coarse to be useful in hydrologic impact assessment models, as these models require information at much finer scales. Therefore, downscaling of GCM outputs is usually employed to provide fine-resolution information required for impact models. Among the downscaling techniques based on statistical principles, multiple regression and weather generator are considered to be more popular, as they are computationally less demanding than the other downscaling techniques. In the present study, the performances of a multiple regression model (called SDSM) and a weather generator (called LARS-WG) are evaluated in terms of their ability to simulate the frequency of extreme precipitation events of current climate and downscaling of future extreme events. Areal average daily precipitation data of the Clutha watershed located in South Island, New Zealand, are used as baseline data in the analysis. Precipitation frequency analysis is performed by fitting the Generalized Extreme Value (GEV) distribution to the observed, the SDSM simulated/downscaled, and the LARS-WG simulated/downscaled annual maximum (AM) series. The computations are performed for five return periods: 10-, 20-, 40-, 50- and 100-year. The present results illustrate that both models have similar and good ability to simulate the extreme precipitation events and, thus, can be adopted with confidence for climate change impact studies of this nature.  相似文献   

2.
This paper presents the development of a probabilistic multi‐model ensemble of statistically downscaled future projections of precipitation of a watershed in New Zealand. Climate change research based on the point estimates of a single model is considered less reliable for decision making, and multiple realizations of a single model or outputs from multiple models are often preferred for such purposes. Similarly, a probabilistic approach is preferable over deterministic point estimates. In the area of statistical downscaling, no single technique is considered a universal solution. This is due to the fact that each of these techniques has some weaknesses, owing to its basic working principles. Moreover, watershed scale precipitation downscaling is quite challenging and is more prone to uncertainty issues than downscaling of other climatological variables. So, multi‐model statistical downscaling studies based on a probabilistic approach are required. In the current paper, results from the three well‐reputed statistical downscaling methods are used to develop a Bayesian weighted multi‐model ensemble. The three members of the downscaling ensemble of this study belong to the following three broad categories of statistical downscaling methods: (1) multiple linear regression, (2) multiple non‐linear regression, and (3) stochastic weather generator. The results obtained in this study show that the new strategy adopted here is promising because of many advantages it offers, e.g. it combines the outputs of multiple statistical downscaling methods, provides probabilistic downscaled climate change projections and enables the quantification of uncertainty in these projections. This will encourage any future attempts for combining the results of multiple statistical downscaling methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Many downscaling techniques have been developed in the past few years for projection of station‐scale hydrological variables from large‐scale atmospheric variables simulated by general circulation models (GCMs) to assess the hydrological impacts of climate change. This article compares the performances of three downscaling methods, viz. conditional random field (CRF), K‐nearest neighbour (KNN) and support vector machine (SVM) methods in downscaling precipitation in the Punjab region of India, belonging to the monsoon regime. The CRF model is a recently developed method for downscaling hydrological variables in a probabilistic framework, while the SVM model is a popular machine learning tool useful in terms of its ability to generalize and capture nonlinear relationships between predictors and predictand. The KNN model is an analogue‐type method that queries days similar to a given feature vector from the training data and classifies future days by random sampling from a weighted set of K closest training examples. The models are applied for downscaling monsoon (June to September) daily precipitation at six locations in Punjab. Model performances with respect to reproduction of various statistics such as dry and wet spell length distributions, daily rainfall distribution, and intersite correlations are examined. It is found that the CRF and KNN models perform slightly better than the SVM model in reproducing most daily rainfall statistics. These models are then used to project future precipitation at the six locations. Output from the Canadian global climate model (CGCM3) GCM for three scenarios, viz. A1B, A2, and B1 is used for projection of future precipitation. The projections show a change in probability density functions of daily rainfall amount and changes in the wet and dry spell distributions of daily precipitation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
ABSTRACT

Downscaling of climate projections is the most adapted method to assess the impacts of climate change at regional and local scales. This study utilized both spatial and temporal downscaling approaches to develop intensity–duration–frequency (IDF) relations for sub-daily rainfall extremes in the Perth airport area. A multiple regression-based statistical downscaling model tool was used for spatial downscaling of daily rainfall using general circulation models (GCMs) (Hadley Centre’s GCM and Canadian Global Climate Model) climate variables. A simple scaling regime was identified for 30 minutes to 24 hours duration of observed annual maximum (AM) rainfall. Then, statistical properties of sub-daily AM rainfall were estimated by scaling an invariant model based on the generalized extreme value distribution. RMSE, Nash-Sutcliffe efficiency coefficient and percentage bias values were estimated to check the accuracy of downscaled sub-daily rainfall. This proved the capability of the proposed approach in developing a linkage between large-scale GCM daily variables and extreme sub-daily rainfall events at a given location. Finally IDF curves were developed for future periods, which show similar extreme rainfall decreasing trends for the 2020s, 2050s and 2080s for both GCMs.
Editor M.C. Acreman; Associate editor S. Kanae  相似文献   

5.
Simulation of future climate scenarios with a weather generator   总被引:4,自引:0,他引:4  
Numerous studies across multiple disciplines search for insights on the effects of climate change at local spatial scales and at fine time resolutions. This study presents an overall methodology of using a weather generator for downscaling an ensemble of climate model outputs. The downscaled predictions can explicitly include climate model uncertainty, which offers valuable information for making probabilistic inferences about climate impacts. The hourly weather generator that serves as the downscaling tool is briefly presented. The generator is designed to reproduce a set of meteorological variables that can serve as input to hydrological, ecological, geomorphological, and agricultural models. The generator is capable of reproducing a wide set of climate statistics over a range of temporal scales, from extremes, to low-frequency interannual variability; its performance for many climate variables and their statistics over different aggregation periods is highly satisfactory. The use of the weather generator in simulations of future climate scenarios, as inferred from climate models, is described in detail. Using a previously developed methodology based on a Bayesian approach, the stochastic downscaling procedure derives the frequency distribution functions of factors of change for several climate statistics from a multi-model ensemble of outputs of General Circulation Models. The factors of change are subsequently applied to the statistics derived from observations to re-evaluate the parameters of the weather generator. Using embedded causal and statistical relationships, the generator simulates future realizations of climate for a specific point location at the hourly scale. Uncertainties present in the climate model realizations and the multi-model ensemble predictions are discussed. An application of the weather generator in reproducing present (1961-2000) and forecasting future (2081-2100) climate conditions is illustrated for the location of Tucson (AZ). The stochastic downscaling is carried out using simulations of eight General Circulation Models adopted in the IPCC 4AR, A1B emission scenario.  相似文献   

6.
The third and fourth statistical moments, that is, skewness and kurtosis, are compared for daily maximum temperature in summer and daily minimum temperature in winter between observations, outputs of two global climate models, four versions of statistical downscaling, and weather generator. The comparison is performed at six stations in central Europe. None of the simulation models can be considered as superior to the others. Causes of a good correspondence with and differences from observations are identified e.g. in the treatment of physics in the models, imperfections in physical parameterizations, or a linear transfer of properties from predictors onto predictands in statistical downscaling.  相似文献   

7.
General circulation models (GCMs), the climate models often used in assessing the impact of climate change, operate on a coarse scale and thus the simulation results obtained from GCMs are not particularly useful in a comparatively smaller river basin scale hydrology. The article presents a methodology of statistical downscaling based on sparse Bayesian learning and Relevance Vector Machine (RVM) to model streamflow at river basin scale for monsoon period (June, July, August, September) using GCM simulated climatic variables. NCEP/NCAR reanalysis data have been used for training the model to establish a statistical relationship between streamflow and climatic variables. The relationship thus obtained is used to project the future streamflow from GCM simulations. The statistical methodology involves principal component analysis, fuzzy clustering and RVM. Different kernel functions are used for comparison purpose. The model is applied to Mahanadi river basin in India. The results obtained using RVM are compared with those of state-of-the-art Support Vector Machine (SVM) to present the advantages of RVMs over SVMs. A decreasing trend is observed for monsoon streamflow of Mahanadi due to high surface warming in future, with the CCSR/NIES GCM and B2 scenario.  相似文献   

8.
This paper assesses linear regression‐based methods in downscaling daily precipitation from the general circulation model (GCM) scale to a regional climate model (RCM) scale (45‐ and 15‐km grids) and down to a station scale across North America. Traditional downscaling experiments (linking reanalysis/dynamical model predictors to station precipitation) as well as nontraditional experiments such as predicting dynamic model precipitation from larger‐scale dynamic model predictors or downscaling dynamic model precipitation from predictors at the same scale are conducted. The latter experiments were performed to address predictability limit and scale issues. The results showed that the downscaling of daily precipitation occurrence was rarely successful at all scales, although results did constantly improve with the increased resolution of climate models. The explained variances for downscaled precipitation amounts at the station scales were low, and they became progressively better when using predictors from a higher‐resolution climate model, thus showing a clear advantage in using predictors from RCMs driven by reanalysis at its boundaries, instead of directly using reanalysis data. The low percentage of explained variances resulted in considerable underestimation of daily precipitation mean and standard deviation. Although downscaling GCM precipitation from GCM predictors (or RCM precipitation from RCM predictors) cannot really be considered downscaling, as there is no change in scale, the exercise yields interesting information as to the limit in predictive ability at the station scale. This was especially clear at the GCM scale, where the inability of downscaling GCM precipitation from GCM predictors demonstrates that GCM precipitation‐generating processes are largely at the subgrid scale (especially so for convective events), thus indicating that downscaling precipitation at the station scale from GCM scale is unlikely to be successful. Although results became better at the RCM scale, the results indicate that, overall, regression‐based approaches did not perform well in downscaling precipitation over North America. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Many impact studies require climate change information at a finer resolution than that provided by general circulation models (GCMs). Therefore the outputs from GCMs have to be downscaled to obtain the finer resolution climate change scenarios. In this study, an automated statistical downscaling (ASD) regression-based approach is proposed for predicting the daily precipitation of 138 main meteorological stations in the Yangtze River basin for 2010–2099 by statistical downscaling of the outputs of general circulation model (HadCM3) under A2 and B2 scenarios. After that, the spatial–temporal changes of the amount and the extremes of predicted precipitation in the Yangtze River basin are investigated by Mann–Kendall trend test and spatial interpolation. The results showed that: (1) the amount and the change pattern of precipitation could be reasonably simulated by ASD; (2) the predicted annual precipitation will decrease in all sub-catchments during 2020s, while increase in all sub-catchments of the Yangtze River Basin during 2050s and during 2080s, respectively, under A2 scenario. However, they have mix-trend in each sub-catchment of Yangtze River basin during 2020s, but increase in all sub-catchments during 2050s and 2080s, except for Hanjiang River region during 2080s, as far as B2 scenario is concerned; and (3) the significant increasing trend of the precipitation intensity and maximum precipitation are mainly occurred in the northwest upper part and the middle part of the Yangtze River basin for the whole year and summer under both climate change scenarios and the middle of 2040–2060 can be regarded as the starting point for pattern change of precipitation maxima.  相似文献   

10.
One of the most significant anticipated consequences of global climate change is the increased frequency of hydrologic extremes. Predictions of climate change impacts on the regime of hydrologic extremes have traditionally been conducted using a top‐down approach. The top‐down approach involves a high degree of uncertainty associated with global circulation model (GCM) outputs and the choice of downscaling technique. This study attempts to explore an inverse approach to the modelling of hydrologic risk and vulnerability to changing climatic conditions. With a focus targeted at end‐users, the proposed approach first identifies critical hydrologic exposures that may lead to local failures of existing water resources systems. A hydrologic model is used to transform inversely the main hydrologic exposures, such as floods and droughts, into corresponding meteorological conditions. The frequency of critical meteorological situations is investigated under present and future climatic scenarios by means of a generic weather generator. The weather generator, linked with GCMs at the last step of the proposed methodology, allows the creation of an ensemble of different scenarios, as well as an easy updating, when new and improved GCM outputs become available. The technique has been applied in Ontario, Canada. The results show significant changes in the frequency of hydro‐climatic extremes under future climate scenarios in the study area. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The Climate impact studies in hydrology often rely on climate change information at fine spatial resolution. However, general circulation models (GCMs), which are among the most advanced tools for estimating future climate change scenarios, operate on a coarse scale. Therefore the output from a GCM has to be downscaled to obtain the information relevant to hydrologic studies. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling of precipitation at monthly time scale. The effectiveness of this approach is illustrated through its application to meteorological sub-divisions (MSDs) in India. First, climate variables affecting spatio-temporal variation of precipitation at each MSD in India are identified. Following this, the data pertaining to the identified climate variables (predictors) at each MSD are classified using cluster analysis to form two groups, representing wet and dry seasons. For each MSD, SVM- based downscaling model (DM) is developed for season(s) with significant rainfall using principal components extracted from the predictors as input and the contemporaneous precipitation observed at the MSD as an output. The proposed DM is shown to be superior to conventional downscaling using multi-layer back-propagation artificial neural networks. Subsequently, the SVM-based DM is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to obtain future projections of precipitation for the MSDs. The results are then analyzed to assess the impact of climate change on precipitation over India. It is shown that SVMs provide a promising alternative to conventional artificial neural networks for statistical downscaling, and are suitable for conducting climate impact studies.  相似文献   

12.
This study investigates the impact of climate change on rainfall, evapotranspiration, and discharge in northern Taiwan. The upstream catchment of the Shihmen reservoir in northern Taiwan was chosen as the study area. Both observed discharge and soil moisture were simultaneously adopted to optimize the HBV‐based hydrological model, clearly improving the simulation of the soil moisture. The delta change of monthly temperature and precipitation from the grid cell of GCMs (General Circulation Models) that is closest to the study area were utilized to generate the daily rainfall and temperature series based on a weather generating model. The daily rainfall and temperature series were further inputted into the calibrated hydrological model to project the hydrological variables. The studies show that rainfall and discharge will be increased during the wet season (May to October) and decreased during the dry season (November to April of the following year). Evapotranspiration will be increased in the whole year except in November and December. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This study presents a multiscale framework for downscaling of the General Circulation Model (GCM) outputs to the mean monthly temperature at regional scale using a wavelet based Second order Voltera (SoV) model. The models are developed using the reanalysis climatic data from the National Centers for Environmental Prediction (NCEP) and are validated using the simulated climatic dataset from the Can CM4 GCM for five locations in the Krishna river basin, India. K-means clustering, based on the multiscale wavelet entropy of the predictors, is used for obtaining the clusters of the input climatic variables. Principal component analysis (PCA) is used to obtain the representative variables from each cluster. These input variables are then used to develop a wavelet based multiscale model using Second order Volterra approach to simulate observed mean monthly temperature for the selected locations in the basin. These models are called W-P-SoV models in this paper. For the purpose of comparison, linear multi-resolution models are developed using Multiple Linear regression (MLR) and are called W-P MLR models. The performance of the models is further compared with other Wavelet-PCA based models coupled with Multiple linear regression models (P-MLR) and Artificial Neural Networks (P-ANN), and, stand-alone MLR and ANN to establish the superiority of the proposed approach. The results indicate that the performance of the wavelet based models is superior in terms of downscaling accuracy when compared with the other models used.  相似文献   

14.
Downscaling techniques are the required tools to link the global climate model outputs provided at a coarse grid resolution to finer scale surface variables appropriate for climate change impact studies. Besides the at-site temporal persistence, the downscaled variables have to satisfy the spatial dependence naturally observed between the climate variables at different locations. Furthermore, the precipitation spatial intermittency should be fulfilled. Because of the complexity in describing these properties, they are often ignored, which can affect the effectiveness of the hydrologic process modeling. This study is a continuation of the work by Khalili and Nguyen (Clim Dyn 49(7–8):2261–2278.  https://doi.org/10.1007/s00382-016-3443-6, 2017) regarding the multi-site statistical downscaling of daily precipitation series. Different approach of multi-site statistical downscaling based on the concept of the spatial autocorrelation is presented in this paper. This approach has proven to give effective results for multi-site multivariate statistical downscaling of daily extreme temperature time series (Khalili et al. in Int J Climatol 33:15–32.  https://doi.org/10.1002/joc.3402, 2013). However, more challenges are presented by the precipitation variable because of the high spatio-temporal variability and intermittency. The proposed approach consists of logistic and multiple regression models, linking the global climate predictors to the precipitation occurrences and amounts respectively, and using the spatial autocorrelation concept to reproduce the spatial dependence observed between the precipitation series at different sites. An empirical technique has also been involved in this approach in order to fulfill the precipitation intermittency property. The proposed approach was performed using observed daily precipitation data from ten weather stations located in the southwest region of Quebec and southeast region of Ontario in Canada, and climate predictors from the NCEP/NCAR (National Centers for Environmental Prediction/National Centre for Atmospheric Research) reanalysis dataset. The results have proven the ability of the proposed approach to adequately reproduce the observed precipitation occurrence and amount characteristics, temporal and spatial dependence, spatial intermittency and temporal variability.  相似文献   

15.
The Antarctic ice sheet surface mass balance shows high spatial variability over the coastal area. As state-of-the-art climate models usually require coarse resolutions to keep computational costs to a moderate level, they miss some local features that can be captured by field measurements. The downscaling approach adopted here consists of using a cascade of atmospheric models from large scale to meso-?? scale. A regional climate model (Modèle Atmosphérique Régional) forced by meteorological reanalyses provides a diagnostic physically-based rain- and snowfall downscaling model with meteorological fields at the regional scale. Although the parameterizations invoked by the downscaling model are fairly simple, the knowledge of small-scale topography significantly improves the representation of spatial variability of precipitation and therefore that of the surface mass balance. Model evaluation is carried out with the help of shallow firn cores and snow height measurements provided by automatic weather stations. Although downscaling of blowing snow still needs to be implemented in the model, the net accumulation gradient across Law Dome summit is shown to be induced mostly by orographic effects on precipitation.  相似文献   

16.
We applied a simple statistical downscaling procedure for transforming daily global climate model (GCM) rainfall to the scale of an agricultural experimental station in Katumani, Kenya. The transformation made was two-fold. First, we corrected the rainfall frequency bias of the climate model by truncating its daily rainfall cumulative distribution into the station’s distribution based on a prescribed observed wet-day threshold. Then, we corrected the climate model rainfall intensity bias by mapping its truncated rainfall distribution into the station’s truncated distribution. Further improvements were made to the bias corrected GCM rainfall by linking it with a stochastic disaggregation scheme to correct the time structure problem inherent with daily GCM rainfall. Results of the simple and hybridized GCM downscaled precipitation variables (total, probability of occurrence, intensity and dry spell length) were linked with a crop model for a more objective evaluation of their performance using a non-linear measure based on mutual information based on entropy. This study is useful for the identification of both suitable downscaling technique as well as the effective precipitation variables for forecasting crop yields using GCM’s outputs which can be useful for addressing food security problems beforehand in critical basins around the world.  相似文献   

17.
This research investigates the potential impacts of climate change on stormwater quantity and quality generated by urban residential areas on an event basis in the rainy season. An urban residential stormwater drainage area in southeast Calgary, Alberta, Canada is the focus of future climate projections from general circulation models (GCMs). A regression‐based statistical downscaling tool was employed to conduct spatial downscaling of daily precipitation and daily mean temperature using projection outputs from the coupled GCM. Projected changes in precipitation and temperature were applied to current climate scenarios to generate future climate scenarios. Artificial neural networks (ANNs) developed for modelling stormwater runoff quantity and quality used projected climate scenarios as network inputs. The hydrological response to climate change was investigated through stormwater runoff volume and peak flow, while the water quality responses were investigated through the event mean value (EMV) of five parameters: turbidity, conductivity, water temperature, dissolved oxygen (DO) and pH. First flush (FF) effects were also noted. Under future climate scenarios, the EMVs of turbidity increased in all storms except for three events of short duration. The EMVs of conductivity were found to decline in small and frequent storms (return period < 5 years); but conductivity EMVs were observed to increase in intensive events (return period ≥ 5 years). In general, an increasing EMV was observed for water temperature, whereas a decreasing trend was found for DO EMV. No clear trend was found in the EMV of pH. In addition, projected future climate scenarios do not produce a stronger FF effect on dissolved solids and suspended solids compared to that produced by the current climate scenario. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Nowadays Regional Climate Models (RCMs) are increasingly used for downscaling of information from the coarse resolution of global climate models (GCMs) and they represent a more and more popular tool for assessment of future climate changes and their impacts at regional scales. In spite of continual progress of RCMs, their outputs still suffer from many uncertainties and biases. Therefore, it is necessary to assess their ability to simulate observed climate characteristics and uncertainties in their outputs before they are applied in subsequent studies. In the present study, the assessment of RCM performance in simulating climate in the reference period of 1961–1990 over the area of Czech Republic is presented. Furthermore, we focused on the intercomparison of the models’ results, mainly on the comparison of the Czech model ALADIN-Climate/CZ with outputs of other RCMs. Simulation of ALADIN-Climate/CZ in 25-km horizontal resolution, and thirteen RCM simulations from the ENSEMBLES project were assessed. Attention was paid especially to comparison of simulated and observed spatial and temporal variability of several climatic variables. The monthly and seasonal values of surface air temperature, precipitation totals and relative humidity were examined for evaluation of temporal variability and 30-year seasonal and monthly values with respect to spatial variability. Climate model performance was evaluated in several ways, namely by boxplots, maps of variability characteristics, skill scores based on mean square error and Taylor diagrams. Model errors detected by model evaluation depend on many factors (e.g. considered variables and their characteristics, area of analysis, time scale of interest and the method of assessment). On the basis of incorporated performance criteria model ALADIN-Climate/CZ belonged to a better group of RCMs in most cases. However, it was definitely the worst in simulating spring monthly means of air temperature and relative humidity in all seasons.  相似文献   

19.
Three-dimensional general circulation models (GCMs) are 'state-of-the-art' tools for projecting possible changes in climate. Scenarios constructed for the Czech Republic are based on daily outputs of the ECHAM-GCM in the central European region. Essential findings, derived from validating, procedures are summarized and changes in variables between the control and perturbed experiments are examined. The resulting findings have been used in selecting the most proper methods of generating climate change projections for assessing possible hydrological and agricultural impacts of climate change in selected exposure units. The following weather variables have been studied: Daily extreme temperatures, daily mean temperature, daily sum of global solar radiation, and daily precipitation amounts. Due to some discrepancies revealed, the temperature series for changed climate conditions (2×CO 2 ) have been created with the help of temperature differences between the control and perturbed runs, and the precipitation series have been derived from an incremental scenario based on an intercomparison of the GCMs' precipitation performance in the region. Solar radiation simulated by the ECHAM was not available and, therefore, it was generated using regression techniques relating monthly means of daily extreme temperatures and global radiation sums. The scenarios published in the paper consist of monthly means of all temperatures, their standard deviations, and monthly means of solar radiation and precipitation amounts. Daily weather series, the necessary input to impact models, are created (i) by the additive or multiplicative modification of observed weather daily series or (ii) by generating synthetic time series with the help of a weather generator whose parameters have been modified in accord with the suggested climate change scenarios.  相似文献   

20.
This paper presents the results of an investigation into the problems associated with using downscaled meteorological data for hydrological simulations of climate scenarios. The influence of both the hydrological models and the meteorological inputs driving these models on climate scenario simulation studies are investigated. A regression‐based statistical tool (SDSM) is used to downscale the daily precipitation and temperature data based on climate predictors derived from the Canadian global climate model (CGCM1), and two types of hydrological model, namely the physically based watershed model WatFlood and the lumped‐conceptual modelling system HBV‐96, are used to simulate the flow regimes in the major rivers of the Saguenay watershed in Quebec. The models are validated with meteorological inputs from both the historical records and the statistically downscaled outputs. Although the two hydrological models demonstrated satisfactory performances in simulating stream flows in most of the rivers when provided with historic precipitation and temperature records, both performed less well and responded differently when provided with downscaled precipitation and temperature data. By demonstrating the problems in accurately simulating river flows based on downscaled data for the current climate, we discuss the difficulties associated with downscaling and hydrological models used in estimating the possible hydrological impact of climate change scenarios. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号