首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   2篇
  国内免费   2篇
测绘学   13篇
大气科学   10篇
地球物理   17篇
地质学   46篇
天文学   29篇
综合类   2篇
自然地理   5篇
  2022年   1篇
  2021年   1篇
  2019年   4篇
  2018年   14篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   9篇
  2013年   15篇
  2012年   6篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   7篇
  2007年   6篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1979年   2篇
  1978年   1篇
  1969年   2篇
排序方式: 共有122条查询结果,搜索用时 31 毫秒
1.
尼泊尔低喜马拉雅推覆带油气苗来源不清极大地影响了该区油气勘探.在地质-地球物理综合调查的基础上,利用油气地球化学、碳同位素及生烃史模拟对尼泊尔代莱克地区油源和成藏过程进行了研究.结果表明:①尼泊尔代莱克地区油苗产于Padukasthan断裂,可分两期,第一期呈含油断层泥产出,氯仿沥青"A"为149~231 μg/g,RR.为0.81%,氯仿沥青"A"的δ13C相对较重(-26.24‰~-27.10‰),族组分具有正碳同位素序列,发黄绿色荧光,为典型的低熟煤成油,第二期呈液态油产出并遭受微生物降解,金刚烷IMD指数为0.33~0.45,R.为1.24%~1.53%,3,4-DMD含量46%~47%,全油δ13C为-29.50‰~-29.45‰,族组分碳同位素趋于一致,发蓝色荧光,为海相成因高熟油;②第一期油来源于Surkhet群的Melpani组和Gondwana群煤系烃源岩,为Ⅲ型有机质低熟阶段的产物,第二期来源于Surkhet群的Swat组浅海陆棚相黑色页岩,为Ⅱ1型有机质生油高峰的产物,两期油与Lakharpata群过成熟黑色泥岩和Siwalik群未熟泥岩没有亲缘关系;③尼泊尔低喜马拉雅推覆带具有"多源多期、推覆增熟、砂体控储、披覆控聚"的油气成藏模式,油气成藏过程可划分为沉积浅埋、构造圈闭形成、深埋油藏形成、气藏形成和晚期改造定型5个演化阶段;④尼泊尔低喜马拉雅推覆有利于Gondwana群、Surkhet群深埋增温、持续快速生烃和晚期成藏,对比邻区巴基斯坦的含油气盆地,尼泊尔低喜马拉雅推覆带及相邻类似地区具备良好的油气成藏条件.  相似文献   
2.
3.
A significant fraction of the total number of particles present in the atmosphere is formed by nucleation in the gas phase. Nucleation and the subsequent growth process influence both number concentration of particles and their size distribution besides chemical and optical properties of atmospheric aerosols. Sulphate aerosol nucleation mechanisms promoted by ions have been evaluated here in a tropospheric interactive chemistry-aerosol module for mass and number concentration in a global atmospheric model. The indirect radiative forcing of sulphate particles is assessed in this model; indirect radiative forcing is different for ion-induced (IIN) and ion-mediated (IMN) mechanisms. The indirect radiative forcing in 10-year simulation runs has been calculated as ?1.42?W/m2 (IIN) and ?1.54?W/m2 (IMN). The 5% emission of primary sulphate particles in simulations changes the indirect radiative forcing from ?1.42 to ?1.44?W/m2 for IIN case, and from ?1.54 to ?1.55 W/m2 for the IMN case. More precisely, owing to greater nucleation rates, IMN mechanisms produces greater cooling than the IIN mechanisms in the backdrop that both mechanisms produce almost identical distribution of CDNC in their pre-industrial runs. The inclusion of primary particles in simulations with IIN and IMN mechanisms increases both CDNC and the indirect radiative forcing.  相似文献   
4.
Singular Value Decomposition (SVD) model is implemented to recognize the Total Electron Content (TEC) time series of daily, temporal as well as seasonal characteristics throughout the 24th solar cycle period of the year 2015 in the study. The Vertical (vTEC) analysis has been carried out with Global Positioning System (GPS) data sets collected from five stations from India namely GNT, Guntur (16.44° N, 80.62° E), and IISC, Bangalore (12.97° N, 77.59° E), LCK2, Lucknow (26.76° N, 80.88° E), one station from Thailand namely AITB, Bangkok (14.07° N, 100.61° E), and one station from South Andaman Island namely PBR, Port Blair (11.43° N, 92.43° E), located in low latitude region. The first five singular value modes constitute about 98% of the total variance, which are linearly transformed from the observed TEC data sets. So it is viable to decrease the number of modeling parameters. The Fourier Series Analysis (FSA) is carried out to characterize the solar-cycle, annual and semi-annual dependences through modulating the first three singular values by the solar (F10.7) and geomagnetic (Ap) indices. The positive correlation coefficient (0.75) of daily averaged GPS–TEC with daily averaged F10.7 strongly supports the temporal variations of the ionospheric features depends on the solar activity. Further, the significance and reliability of the SVD model is evaluated by comparing it with GPS–TEC data and the standard global model (Standard Plasma-Spherical Ionospheric Model, SPIM and International Reference Ionosphere, IRI 2016).  相似文献   
5.
The Ganga River plays a major role in the transfer of materials from the Indian sub-continent to the Bay of Bengal, both in dissolved and particulate forms. To understand the present elemental dynamics of the Ganga River system, it is important to assess the hydrogeochemical contribution of its tributaries. In this paper, we present an updated database on dissolved and particulate fluxes and denudation rates of the Himalayan tributaries of the Ganga River (Ramganga, Ghaghara, Gandak and Kosi). Dissolved trace element concentrations, their fluxes and suspended sediment-associated elemental fluxes of the Himalayan tributaries have been reported for the first time. Total dissolved flux of the Ramganga, Ghaghara, Gandak and Kosi was estimated as 4, 19.1, 10.3 and 8.8 million tons year?1 accounting for ~?5.7, ~?27.3, ~?14.7 and ~?12.6%, respectively, of the total annual dissolved load carried by the Ganga River. The total particulate flux of the Ramganga, Ghaghara, Gandak and Kosi was computed as 8.2, 81.6, 30.9 and 19.5 million tons year?1, respectively. Compared to earlier studies, we have found a significant increase in the total dissolved flux and chemical denudation rate of the studied tributaries. The estimated particulate fluxes were found to be low in comparison to the previous studies. We suggest that a significant increase in the dissolved fluxes and a decrease in the particulate fluxes are an indication of the increasing anthropogenic disturbances in the catchment of these tributaries.  相似文献   
6.
The flow equations of non-Newtonian EMFD flows are formulated in terms of stream function and magnetic flux function as a independent variable. The exact analytical solution of physical importance is obtained for orthogonal and radial flows.  相似文献   
7.
With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantitative analysis of the snow cover in the higher Himalayas. In this study, a nonlinear autoregressive exogenous model, an artificial neural network (ANN), was deployed to predict the snow cover in the Kaligandaki river basin for the next 30 years. Observed climatic data, and snow covered area was used to train and test the model that captures the gross features of snow under the current climate scenario. The range of the likely effects of climate change on seasonal snow was assessed in the Himalayas using downscaled temperature and precipitation change projection from - HadCM3, a global circulation model to project future climate scenario, under the AIB emission scenario, which describes a future world of very rapid economic growth with balance use between fossil and non-fossil energy sources. The results show that there is a reduction of 9% to 46% of snow cover in different elevation zones during the considered time period, i.e., 2Oll to 2040. The 4700 m to 52oo m elevation zone is the most affected area and the area higher than 5200 m is the least affected. Overall, however, it is clear from the analysis that seasonal snow in the Kaligandaki basin is likely to be subject to substantialchanges due to the impact of climate change.  相似文献   
8.
Geomagnetic field variations during five major Solar Energetic Particle (SEP) events of solar cycle 23 have been investigated in the present study. The SEP events of 1 October 2001, 4 November 2001, 22 November 2001, 21 April 2002 and 14 May 2005 have been selected to study the geomagnetic field variations at two high-latitude stations, Thule (77.5° N, 69.2° W) and Resolute Bay (74.4° E, 94.5° W) of the northern polar cap. We have used the GOES proton flux in seven different energy channels (0.8–4 MeV, 4–9 MeV, 9–15 MeV, 15–40 MeV, 40–80 MeV, 80–165 MeV, 165–500 MeV). All the proton events were associated with geoeffective or Earth directed CMEs that caused intense geomagnetic storms in response to geospace. We have taken high-latitude indices, AE and PC, under consideration and found fairly good correlation of these with the ground magnetic field records during the five proton events. The departures of the H component during the events were calculated from the quietest day of the month for each event and have been represented as ΔH THL and ΔH RES for Thule and Resolute Bay, respectively. The correspondence of spectral index, inferred from event integrated spectra, with ground magnetic signatures ΔH THL and ΔH RES along with Dst and PC indices have been brought out. From the correlation analysis we found a very strong correlation to exist between the geomagnetic field variation (ΔHs) and high-latitude indices AE and PC. To find the association of geomagnetic storm intensity with proton flux characteristics we derived the correspondence between the spectral indices and geomagnetic field variations (ΔHs) along with the Dst and AE index. We found a strong correlation (0.88) to exist between the spectral indices and ΔHs and also between spectral indices and AE and PC.  相似文献   
9.
10.
The Large Angle Spectrometric Coronagraph (LASCO) and Extreme-ultraviolet Imaging Telescope (EIT) onboard Solar and Heliospheric Observatory (SOHO) provide us with unprecedented multi-wavelength observations helping us to understand different dynamic phenomena on the Sun and in the corona. In this paper we discuss the association between post-eruptive arcades (PEAs) detected by EIT and white-light coronal mass ejections (CMEs) detected by LASCO/C2 telescope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号