首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
地球物理   1篇
地质学   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
In this paper, Leaf Area Index (LAI) and Crop Height (CH) are modeled to the most known spectral vegetation index — NDVI — using remotely sensed data. This approach has advantages compared to the classic approaches based on a theoretical background. A GER-1500 field spectro-radiometer was used in this study in order to retrieve the necessary spectrum data for estimating a spectral vegetation index (NDVI), for establishing a semiempirical relationship between black-eyed beans’ canopy factors and remotely sensed data. Such semi-empirical models can be used then for agricultural and environmental studies. A field campaign was undertaken with measurements of LAI and CH using the Sun-Scan canopy analyzer, acquired simultaneously with the spectroradiometric (GER1500) measurements between May and June of 2010. Field spectroscopy and remotely sensed imagery have been combined and used in order to retrieve and validate the results of this study. The results showed that there are strong statistical relationships between LAI or CH and NDVI which can be used for modeling crop canopy factors (LAI, CH) to remotely sensed data. The model for each case was verified by the factor of determination. Specifically, these models assist to avoid direct measurements of the LAI and CH for all the dates for which satellite images are available and support future users or future studies regarding crop canopy parameters.  相似文献   
2.
A statistical framework based on nonlinear dynamics theory and recurrence quantification analysis of dynamical systems is proposed to quantitatively identify the temporal characteristics of extreme (maximum) daily precipitation series. The methodology focuses on both observed and general circulation model (GCM) generated climates for present (1961–2000) and future (2061–2100) periods which correspond to 1xCO2 and 2xCO2 simulations. The daily precipitation has been modelled as a stochastic process coupled with atmospheric circulation. An automated and objective classification of daily circulation patterns (CPs) based on optimized fuzzy rules was used to classify both observed CPs and ECHAM4 GCM‐generated CPs for 1xCO2 and 2xCO2 climate simulations (scenarios). The coupled model ‘CP‐precipitation’ was suitable for precipitation downscaling. The overall methodology was applied to the medium‐sized mountainous Mesochora catchment in Central‐Western Greece. Results reveal substantial differences between the observed maximum daily precipitation statistical patterns and those produced by the two climate scenarios. A variable nonlinear deterministic behaviour characterizes all climate scenarios examined. Transitions’ patterns differ in terms of duration and intensity. The 2xCO2 scenario contains the strongest transitions highlighting an unusual shift between floods and droughts. The implications of the results to the predictability of the phenomenon are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号