首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
华南地区震源机制与应力场特征   总被引:4,自引:0,他引:4  
陈益明 《华南地震》1992,12(2):23-31
本文以159个震源机制解为主,并结合其他途径所得结果,对华南地区震源应力场作进一步综合分析,推断本区现代地壳构造应力场方向特征,并对分区差异、震源破裂机制和力源等作了较全面的探讨。  相似文献   

2.
2000年1月15日姚安6.5级地震的震源断层与震源应力场   总被引:8,自引:1,他引:8  
用姚安地震序列前震、主震和余震的 78个震源机制解 ,分析了序列震源断层和震源应力场特征。结果表明 ,姚安地震序列的主破裂面是走向N5 0°W、倾角陡立的构造断裂 ,主震、前震和绝大多数余震都发生在主破裂面上。此外 ,NNE NE向构造断裂在序列发展过程中也参与了活动。序列震源应力场以SSE方位、接近水平的主压应力为主 ,与区域构造应力场一致。在序列发展中 ,震源区应力场出现多方位和多作用方式共存的复杂状态 ,震源破裂出现多方向和多表现形式的复杂性特征  相似文献   

3.
1996年3月19日新疆阿图什6.9级地震震源破裂特征的研究   总被引:4,自引:0,他引:4  
通过对1996年3月19日新疆阿图什6.9级地震余震分布特征的研究,分析了这次地震震源破裂过程.并结合柯坪断裂带的构造运动、区域应力场的分布特征以及1972年以来该带的另外3次6级地震的余震分布方向,探讨了柯坪断裂带附近地区不同构造部位震源破裂扩展方向与强震活动的迁移方向.结果表明,本次地震震源破裂为明显的单侧破裂.柯坪断裂带的阿图什震区和柯坪震区,余震分布具有一定规律性,震源破裂基本都为单侧破裂;震源断错以逆断层为主.区内主要受NW向压应力。不同地段强震震源破裂扩展具有明显的区域特征,强余震分布方向是应力集中的体现,它标志着同一构造断裂带附近近期强震活动的迁移方向.在柯坪断裂带上这种规律更为明显。  相似文献   

4.
川滇块体及周边区域现今震源机制和应力场特征   总被引:9,自引:6,他引:3       下载免费PDF全文
罗钧  赵翠萍  周连庆 《地震地质》2014,36(2):405-421
利用CAP(Cut and paste)方法获取了川滇块体及周边区域2007年8月至2013年4月75次3.5级以上中等地震的震源机制解,结合哈佛大学历史地震震源机制解,分析了震源机制解和震源深度的空间分布特征,并探讨了其构造动力学背景。结果表明:1)川滇块体各不同断裂带、块体内部各次级块体之间、块体内外表现出不同的震源机制解空间分布特征,揭示出位于青藏高原东南缘的川滇块体及周边地区应力场的非均匀性;2)研究区各主要断裂带所反映的与构造背景作用一致的震源机制分布特征表明,川滇块体及周边近期断层破裂方式主要受到各个断裂带的构造活动以及次级块体之间相互作用的控制;3)丽江-小金河断裂带上特殊的震源机制特征和发震应力轴的分布特征,进一步证实了丽江-小金河断裂带对高原逃逸物质的抵挡和屏蔽的作用;4)震源深度分布特征表明,川滇块体及周边地震震源深度主要分布于15km的上地壳,优势分布在5~15km的范围,揭示出研究区的地壳脆性孕震层位于5~15km的上地壳。  相似文献   

5.
渤海海峡及邻区现代小震震源机制解分析   总被引:2,自引:0,他引:2  
以震源机制解资料推演并分析了渤海海峡及其周围地区现代构造应力场的总体特征、分区差异及地震破裂性质。认为构造应力场在某些局部与大区域之间有一定差异,而主张应力轴方位参数一致性稍好些,约在330°~360°之间,取向为北北西;构造应力场存在分区差异,尤以南北纵向差异明显;由于研究区内包含了地质构造和新构造活动性质各异的多个构造单元,地震破裂方向一致性较差  相似文献   

6.
1996年3月19日新疆阿图什6.9级地震震源破坏特征的研究   总被引:3,自引:0,他引:3  
高国英 《地震》1997,17(3):290-296
通过对1996年3月19日新疆阿图什6.9级地震余震分布特征的研究,分析了这次地震震源破裂过程,并结合柯坪断裂带的构造运动、区域应力场的分布特征以及1972年以来该带的另外3次6级地震的余震分布方向。探讨了柯坪断裂带附近地区不同构造部位震源破裂扩展方向与强震活动的迁移方向。结果表明,本次地震震源破坏为明显的单侧破裂;震源断错以逆断层为主,区内主要受NW向压应力。不同地段强震震源破裂扩展具有明显的区  相似文献   

7.
汶川地震发震构造应力场分析   总被引:1,自引:0,他引:1  
通过对汶川8级地震区的地震震源机制资料进行分析,得到了该区域内地震震源机制分布及分类特点,讨论了断裂重新滑动型地震的发震构造应力场的校对问题,提出了使用地震学的定标率来区分破裂型地震和滑动型地震的方法,并给出了汶川地震发震构造应力场的分布,结合龙门山断裂带的几何特征,分析了孕育和发生8级地震的构造原因。  相似文献   

8.
本文收集了1976—2017年滇缅活动地块98个MW 4.8—7.0地震的震源机制解,分析震源机制解和震源深度的空间分布特征,探讨了其构造动力学背景。结果表明:①滇缅活动地块震源深度优势分布范围为10—30km,90%以上的地震震源深度小于30km,结合研究区统计时段内地震震源深度、优势度、众数等参数,推断滇缅活动地块及周边震源深度的下界为30km,脆性多震层位于10—30km,且主要位于15km附近;②滇缅活动块体不同断裂带、块体内部各次级块体之间、块体内外表现出不同的震源机制解,在空间上存在着明显的分区性特征,揭示出位于青藏高原东南缘的滇缅活动块体及周边地区应力场的非均匀性;③滇缅活动地块区域构造应力场明显受周边板块作用的控制,活动地块内部由于构造格局及其运动的差异,应力状态具有明显的区域特征。根据研究区各主要断裂带所反映的与构造背景作用一致的震源机制分布特征,可以将滇缅活动地块初步分为3个应力区。  相似文献   

9.
川滇地区7级大震前中强震震源机制变化   总被引:7,自引:0,他引:7  
分析了 70年代以来 ,川滇地区发生的 8次 7级大震前 5年内 ,发生在大震孕震区和震源区内的中强震震源机制解时空分布。结果表明 ,最早中强震发生在大震震源区或其附近 ,其发震应力场与区域构造应力场一致 ,与大多数大震发震应力场一致或接近。大多数中强震震源破裂特征与大震明显不同。之后有多次中强震发生在距大震震源区较远的大震孕震区内其他地方 ,它们的发震应力场往往经历了与区域构造应力场和大震应力场一致与不一致的多次交替变化。大震前最后 1个中强震也发生在距大震震源区较近的地方 ,其发震应力场与大震发震应力场明显不一致 ,偏转了 30°~ 5 0° ,或更多 ,大多数也与区域构造应力场不一致 ,有的中强震发震断裂破裂特征与大震不一致。大震前中强震震源机制的变化 ,反映了大震孕育过程的不同阶段 ,区域构造应力场的时空调整变化和增强过程 ,以及由此引发的构造断裂异常活动 ,揭示出与大震发生有关的应力场和震源破裂特征信息  相似文献   

10.
伽师强震群震源破裂特征的初步分析   总被引:21,自引:5,他引:21       下载免费PDF全文
为深入研究1997年新疆伽师地区连续发生的强震群的震源破裂特征,利用全球数字地震台网(GDSN)宽频带数字资料及区域台网资料,较详细地研究了伽师强震群的震源机制及震源破裂特征.结果表明:伽师强震群的震源机制解主要有走滑和正倾两种破裂类型,其共同特点是主压应力轴方向沿北北东向,主张应力轴沿北西向,与区域构造应力场方向存在差异,具有明显局部特征;从震源破裂特征来看,伽师强震的滑动尺度、上升时间和持续时间均较小,震源破裂面积不大,是由一点向四周快速扩散的脆性破裂,无明显伸展方向;伽师强震群的破裂断层面为北东向,与震源深度梯度变化带、地壳接触变形梯度变化带、等烈度线以及地震扩展方向吻合;伽师强震群是在近南北向挤压环境下,在震源区附近剪切和张扭应力作用下发生的多次沿北东向的脆性快速破裂,从而造成了伽师强震群以张性破裂和左旋走滑为主的震源特征.  相似文献   

11.
运用格点尝试法推断了沂沭断裂带现状构造应力场的分段受力环境,初步分析了沭断裂带及其两侧块体在中强地震前后构造应力环境的变化特点。其变化特点为:震前3个区主应力方位值有一个明显的增大趋势;3个区的增大变化为不同步;沂沭带主应力方位值增大出现时间较晚,增幅较大,为阶跃性增大;山东东部的主张应力方位值幅度增大,持续达4年以上,震后3个区主应力方位值出现明显的同步性回落,沂沭带的主应力降幅巨大。  相似文献   

12.
昆明地区现代构造应力场分析   总被引:8,自引:0,他引:8  
利用1965~2002年强震震源机制资料,对昆明及附近地区现代构造应力场空间分布、地震震源破裂特征进行了分析,认为昆明地区区域现代构造应力场以水平作用为主,主压应力优势方位为SSE-SE,主张应力优势方位为NE—NEE。  相似文献   

13.
Due to the interaction between the Tibetan plateau, the Alxa block and the Ordos block, the western margin of Ordos(33.5°~39°N, 104°~108°E)has complex tectonic features and deformation patterns with strong tectonic activities and active faults. Active faults with different strikes and characteristics have been developed, including the Haiyuan Fault, the Xiangshan-Tianjingshan Fault, the Liupanshan Fault, the Yunwushan Fault, the Yantongshan Fault, the eastern Luoshan Fault, the Sanguankou-Niushoushan Fault, the Yellow River Fault, the west Qinling Fault, and the Xiaoguanshan Fault. In this study, 7 845 earthquakes(M≥1.0)from January 1st, 1990 to June 30th, 2018 were relocated using the double-difference location algorithm, and finally, we got valid locations for 4 417 earthquakes. Meanwhile, we determined focal mechanism solutions for 54 earthquakes(M≥3.5)from February 28th, 2009 to September 2nd, 2017 by the Cut and Paste(CAP)method and collected 15 focal mechanism solutions from previous studies. The spatial distribution law of the earthquake, the main active fault geometry and the regional tectonic stress field characteristics are studied comprehensively. We found that the earthquakes are more spatially concentrated after the relocation, and the epicenters of larger earthquakes(M≥3.5) are located at the edge of main active faults. The average hypocenter depth is about 8km and the seismogenic layer ranges from 0 to 20km. The spatial distributions and geometry structures of the faults and the regional deformation feature are clearly mapped with the relocated earthquakes and vertical profiles. The complex focal mechanism solutions indicate that the arc-shaped tectonic belt consisting of Haiyuan Fault, Xiangshan-Tianjingshan Fault and Yantongshan Fault is dominated by compression and torsion; the Yellow River Fault is mainly by stretching; the west Qinling Fault is characterized by shear and compression. The structural properties of the fault structure are dominated by strike-slip and thrust, with a larger strike-slip component. The near-north-south Yellow River Fault is characterized by high angle NW dipping and normal fault motion. Based on small earthquake relocation and focal mechanism solution results, and in combination with published active structures and geophysical data in the study area, it is confirmed that the western margin of Ordos is affected by the three blocks of the Tibetan plateau, the Alax and the Ordos, presenting different tectonic deformation modes, and there are also obvious differences in motion among the secondary blocks between the active faults. The area south of the Xiangshan-Tianjingshan Fault has moved southeastward since the early Quaternary; the Yinchuan Basin and the block in the eastern margin of the Yellow River Fault move toward the SE direction.  相似文献   

14.
On October 17, 2014, a MS6.6 earthquake occurred in Jinggu, Yunnan. The epicenter was located in the western branch of Wuliang Mountain, the northwest extension line of Puwen Fault. There are 2 faults in the surrounding area, one is a sinistral strike-slip and the other is the dextral. Two faults have mutual intersection with conjugate joints property to form a checkerboard faulting structure. The structure of the area of the focal region is complex. The present-day tectonic movement is strong, and the aftershock distribution indicates the faulting surface trending NNW. There is no obvious surface rupture related to the known fault in the epicenter, and there is a certain distance from the surface of the Puwen fault zone. Regional seismic activity is strong. In 1941, there were two over magnitude 7.0 earthquakes in the south of the epicenter of Jinggu County and Mengzhe Town. In 1988, two mainshock-aftershock type earthquakes occurred in Canglan-Gengma Counties, the principal stress axes of the whole seismic area is in the direction of NNE. Geological method can be adopted to clarify the distribution of surficial fracture caused by active faults, and high-precision seismic positioning and spatial distribution characteristics of seismic sequences can contribute to understand deep seismogenic faults and geometric features. Thus, we can better analyze the three-dimensional spatial distribution characteristics of seismotectonics and the deep and shallow tectonic relationship. The focal mechanism reveals the property and faulting process to a certain extent, which can help us understand not only the active property of faults, but also the important basis for deep tectonic stress and seismogenic mechanism. In order to study the fault characteristic of the Jinggu earthquake, the stress field characteristics of the source area and the geometric parameters of the fault plane, this paper firstly uses the 15 days aftershock data of the Jingsuo MS6.6 earthquake, to precisely locate the main shock and aftershock sequences using double-difference location method. The results show that the aftershock sequences have clustering characteristics along the NW direction, with a depth mainly of 5~15km. Based on the precise location, calculations are made to the focal mechanisms of a total of 46 earthquakes including the main shock and aftershocks with ML ≥ 3.0 of the Jinggu earthquake. The double-couple(DC)component of the focal mechanism of the main shock shows that nodal plane Ⅰ:The strike is 239°, the dip 81°, and the rake -22°; nodal plane Ⅱ, the strike is 333°, the dip 68°, and the rake -170.31°. According to focal mechanism solutions, there are 42 earthquakes with a focal mechanism of strike-slip type, accounting for 91.3%. According to the distribution of the aftershock sequence, it can be inferred that the nodal plane Ⅱ is the seismogenic fault. The obtained focal mechanism is used to invert the stress field in the source region. The distribution of horizontal maximum principal stress orienation is concentrated. The main features of the regional tectonic stress field are under the NNE-SSW compression(P axis)and the NW-SE extension(T axis)and are also affected by NNW direction stress fields in the central region of Yunnan, which indicates that Jinggu earthquake fault, like Gengma earthquake, is a new NW-trending fault which is under domination of large-scale tectonic stress and effected by local tectonic stress environment. In order to define more accurately the occurrence of the fault plane of the Jinggu earthquake, with the precise location results and the stress field in the source region, the global optimal solution of the fault plane parameters and its error are obtained by using both global searching simulated annealing algorithm and local searching Gauss-Newton method. Since the parameters of the fault plane fitting process use the stress parameters obtained by the focal mechanism inversion, the data obtained by the fault plane fitting is more representative of the rupture plane, that is, the strike 332.75°, the dip 89.53°, and the rake -167.12°. The buried depth of the rupture plane is 2.746km, indicating that the source fault has not cut through the surface. Based on the stress field characteristics and the inversion results of the fault plane, it is preliminarily believed that the seismogenic structure of the Jinggu earthquake is a newly generated nearly vertical right-lateral strike-slip fault with normal component. The rupture plane length is about 17.2km, which does not extend to the Puwen fault zone. Jinggu earthquake occurred in Simao-Puer seismic region in the south of Sichuan-Yunnan plate. Its focal mechanism solution is similar to that of the three sub-events of the Gengma earthquake in November 1988. The seismogenic structure of both of them is NW-trending and the principal stress is NE-SW. The rupture plane of the Jinggu main shock(NW direction)is significantly different from the known near NS direction Lancang Fault and the near NE direction Jinggu Fault in the study area. It is preliminarily inferred that the seismogenic structure of this earthquake has a neogenetic feature.  相似文献   

15.
张渤带陆地段现代构造应力场的非均匀特征   总被引:6,自引:1,他引:5  
依据活动构造展布及震中分布等情况,将张渤带(张家口-渤海断裂带)陆地段及邻近地区划分为6个应力区,利用格点尝试法计算了1967~2006年间这6个分区内的529个震源机制解.结果显示,6个分区的应力结构较为一致,均为走滑型应力结构;但在应力方向上有明显不同,其应力主轴方向有由西北端的NEE向至东南端的近EW向呈顺时针旋转的趋势.此外,以1976年唐山地震与1998年张北地震为时间界限,计算了张渤带陆地段3个构造交汇段(即张北-怀来段、南口-三河段、天津-塘沽段,简称西段、中段、东段)上的地震震源机制解及各构造段在不同时段的平均主应力轴分布,得到了应力场随时间的变化特征.其中,西段与中段的构造应力场变化复杂,其应力主轴方向在唐山地震后经调整已基本回复至唐山地震前的状态;而东段的平均应力主轴呈顺时针旋转,目前仍为近EW向.张渤带陆地段现代构造应力场的时空非均匀变化特征可能与周边块体的相互作用及两次中强地震(唐山地震与张北地震)有关.  相似文献   

16.
利用Snoke方法计算赣北地区2008—2015年11个M_L≥3.0中小地震震源机制。结果表明,其P轴和T轴方向与该区域构造应力场基本一致。赣北地区以近EW向挤压、近NS向拉张的构造应力为主。区域内断层错综复杂,以走滑、正断型为主。其中九江—瑞昌地区受襄樊—广济断裂、郯庐断裂相互作用,在方向稳定的构造应力作用下,易发生走滑型为主的地震。  相似文献   

17.
利用甘肃省测震台网观测到的主震波形记录的初动符号求解了2013年7月22 日岷县Ms6.6地震主震的震源机制,并与哈佛及usgs发布的震源机制进行了对比,对这一地区过去发生过的若干次Mb4.5以上的地震也利用初动符号求解了震源机制,发现与Ms6.6地震的震源机制形态较为相似.进而利用2010年至2011年甘东南宽频带流动台阵的大量近震资料,对在震中距50 km范围内,并且接近岷县Ms6.6地震发震断裂临潭-宕昌断裂的中小地震进行了检索,对检索到的地震进行初动识别后得到初动数目大于10个、并且对震源包络良好的中小地震31个,利用小震的震源机制解求解了该区域的区域应力场.结果表明这一区域的主压力方向为NEE方向.  相似文献   

18.
王华林  侯珍清 《地震研究》1994,17(1):79-107
昌马断裂带是是青藏高原北部一条活动强烈的左旋走滑断裂带。它表现为重力、航磁、地壳厚度的综合异常梯度带,属于断面陡、切割深的超岩石圈断裂。昌马断裂带由12条长4公里至18公里不等的不连续的主断层和4条次级断层组成,可划分为东、中、西三大段落。断裂的水平位移和滑动速率具有分段性,全新世以来,东、中、西三段的左旋水平滑动速率分别为4.1毫米/年,2.6毫米/年和1.5毫米/年。北东东、北北西和北西西三个方向断层的位移具有分级特征,不同级别的位移具有良好的同步性。全新世以来北东东、北北西和北西西三个方向断层的水平滑动速率分别为4.1毫米/年、3.8毫米/年和2.7毫米/年。白垩纪以来,昌马断裂呈天平式运动,显示了枢纽断裂运动特征,枢纽轴位于断裂中段。昌马地震震源破裂性质及其反映的震源应力场与地震破裂带的破裂性质及其反映的构造应力场不一致。昌马地震震源机制解反映了北北西~南南东挤压,作用应力近于水平的震源应力场;昌马地震破裂带的变形组合反映了东北~南西挤压的构造应力场。昌马地震破裂带长120公里,分为东部正走滑段、中部逆走滑段和西部尾端破裂段,显示了多个水平位移峰值。全新世以来,沿昌马断裂发生了6次强震事件,强震复发  相似文献   

19.
根据张北地震序列的地震活动特征,利用张北震区1998年1月~1999年3月间145个3 级左右地震的震源机制解资料,应用Gephart(1990)的应力张量反演方法,研究张北地震序列构造应力张量的总体变化特征和时序变化特征;研究发现强余震发生前,应力张量的波动幅度不是很大,震源及附近地区的构造应力作用较强,强余震发生后,应力因发生破裂而重新分布。而且震源区的构造应力场方向与华北地区的构造应力场方向基本一致,说明张北主震和强余震都是在华北统一构造应力场的作用下发生的。  相似文献   

20.
滇东南弧形构造带现今活动性质的地震学研究   总被引:3,自引:2,他引:1       下载免费PDF全文
呼楠  韩竹军 《地震地质》2013,35(1):1-21
利用hypo2000和hypoDD程序对滇东南弧形构造带1990—2011年间的小震进行了重新定位和精定位;精定位后水平误差≤1.4km,垂直误差≤1.9km。在此基础上,根据P珔波和S珔波最大振幅比法,得到区内2007—2012年间148个小震的震源机制解。研究表明,正-走滑滑动性质的节面数几乎为逆-走滑的2倍,显示该区现今构造活动以正-走滑性质为主。根据精定位后的小震震源深度剖面特征,曲江断裂、石屏-建水断裂倾向SW,红河断裂倾向NE,与该地区地壳速度结构剖面所反映的断裂几何学特征一致。在大陆动力学背景上,苏门答腊-缅甸海沟的回拉效应影响边界可能已经沿NEE方向深入到曲江断裂和石屏-建水断裂,而川滇块体SSE向的推挤作用在滇东南弧形构造带可能已居于次要地位,与SSE-NNW向的挤压作用相比,SWW-NEE向的拉张效应在滇东南现今构造活动中起着更重要的作用。这样的构造动力学背景与小震震源参数的总体特征所反映的构造力学环境也是一致的,滇东南弧形构造带可能是一个正在形成的张-剪性构造区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号